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a b s t r a c t

Soil microbial diversity is vast, and we lack even basic understanding of how this diversity is distributed
ecologically. Using pyrosequencing and microarray methods, we quantified the structure of bacterial
communities in two contrasting soils underlying Bornean rain forest (clay and sandy loam) that differ
markedly in soil properties, aboveground tree flora, and leaf litter decomposition rates. We found
significant soil-related taxonomic and phylogenetic differences between communities that, due to their
proximity, are independent of climate. Bacterial communities showed distinct compositional and taxon-
abundance distributions that were significantly correlated with the structure of the overlying tree
community. Richness of bacteria was greater in the more resource-rich clay soil. Phylogenetic community
analyses suggested that environmental filtering may be an important mechanism of community
assembly in clay, compared to niche-competition in sandy loam. The Acidobacteria were the most
abundant group in clay, but the Proteobacteria dominated in sandy loam. Of the ten most abundant
classes, the Actinobacteria, Betaproteobacteria, Clostridia, Bacilli, and Gammaproteobacteria were more
abundant in sandy loam than clay. Our study, which is the first to quantify edaphic variation in bacterial
communities using high-throughput methods in soils underlying one of the most tree species rich forests
on Earth, indicates an important role of plantesoil feedbacks linking the community structure of the
trees and the underlying soil microbiome. We suggest the biochemical composition of carbon and
nutrient resources in plant litter and soil pH and oxygen availability as important determinants of the
distribution of bacterial diversity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Microbial diversity in soils is vast: a recent estimate suggests
that a ton of soilmay harbor at least onemillion species (Curtis et al.,
2002). Of these, the microorganisms that decompose organic litter
are a crucial component of global biogeochemical cycles (Burgin
et al., 2011; van der Heijden et al., 2008), breaking down complex
organic carbon and releasing CO2 to the atmosphere via cellular
respiration and making nutrients available to support primary
production (Bardgett et al., 2009, 2008; Dubinsky et al., 2010;
Nielsen et al., 2011; Reynolds et al., 2003; Zak et al., 2003). Unlike
higher organisms, broad surveys of microbial diversity, including
: þ1 402 472 2083.
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Bacteria, Fungi, and Archaea, have historically been technologically
infeasible, especially in soils, but recently developed molecular and
genomic tools now open awindowon the diversity and structure of
these communities (Caporaso et al., 2011; Fierer et al., 2007b).

Nowhere are soil microbial communities likely to be more
complex thanunder tropical rain forests,whichhouse themajorityof
plant diversity on Earth (Dirzo and Raven, 2003). However, the
factors that control the structure and composition of soil microbial
communities are notwell understood (Fierer and Lennon, 2011), and
there is some evidence that well-established patterns of plant
diversity are not necessarily predictive of those for microorganisms
(Bryant et al., 2008; Fierer et al., 2011; Green et al., 2004), despite
their obvious trophic linkages (Zak et al., 2003). In many plant
communities, litter principally defines the resources available to
decomposer microorganisms in and above the soil (Hobbie, 1992;
Waldrop et al., 2006; Wieder et al., 2008). Tropical rain forests
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Table 1
Properties of surface soil (0e10 cm) and leaf litterfall and decomposition for two soil
types underlying Bornean rain forest. Significant differences among soil types are
indicated by different lowercase letters, with standard errors following the means,
when available. Abbreviations are as follows: CEC, cation exchange capacity and BS,
base saturation.

Property Soil type

Sandy loam Clay Source

Soil
pH 4.64 � 0.01 a 4.43 � 0.04 b Davies et al. (2005)
Bulk density 0.83 � 0.04 a 0.95 � 0.02 b Palmiotto (1998)
CEC (cmolþ/kg) 7.61 7.21 Baillie et al. (2006)
BS (%) 7.0 a 11.8 b Baillie et al. (2006)
Total C (%) 1.90 � 0.10 a 1.49 � 0.12 b Davies et al. (2005)
Total N (%) 0.093 � 0.001 a 0.107 � 0.003 b Davies et al. (2005)
C:N 14.20 � 0.80 a 10.60 � 0.80 b Palmiotto (1998)
Total P (mg/kg) 43.7 � 0.7 a 133.6 � 4.1 b Davies et al. (2005)
Available P (mg/kg) 1.4 1.4 Baillie et al. (2006)
Exchangeable
Mg (cmolþ/kg)

0.12 � 0.01 a 0.70 � 0.04 b Davies et al. (2005)

Exchangeable
Ca (cmolþ/kg)

0.21 � 0.01 a 0.52 � 0.01 b Davies et al. (2005)

Exchangeable
K (cmolþ/kg)

0.12 a 0.14 b Baillie et al. (2006)

Residual P (mg/kg) 90 a 129 b Baillie et al. (2006)
Residual Ca (mg/kg) 133 170 Baillie et al. (2006)
Residual Mg (mg/kg) 733 a 1421 b Baillie et al. (2006)
Residual K (mg/kg) 2356 a 4231 b Baillie et al. (2006)
Residual Fe (mg/kg) 7808 a 14564 b Baillie et al. (2006)

Leaf litter
Litterfall (kg/ha-y) 6260 6550 Palmiotto (1998)
Half-life of leaf
litter (y)

1.24 a 0.48 b Palmiotto (1998)

Leaf litter nutrient input
N (kg/ha-y) 57.00 � 6.60 74.00 � 3.00 Palmiotto (1998)
P (kg/ha-y) 0.89 � 0.10 1.83 � 0.07 Palmiotto (1998)
K (kg/ha-y) 14.30 � 1.60 18.40 � 0.70 Palmiotto (1998)
Ca (kg/ha-y) 15.80 � 1.80 50.20 � 2.00 Palmiotto (1998)
Mg (kg/ha-y) 11.30 � 1.30 13.30 � 0.50 Palmiotto (1998)
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contribute some of the highest levels of primary production on the
planet (Lewis et al., 2009; Sitch et al., 2008), much of which ulti-
mately falls as leaf litter. The amount anddiversity of leaf litter and its
quality can have strong impacts on microbial community composi-
tion and function (Chapman and Newman, 2010; Nemergut et al.,
2010). Leaf litter from different plant species can present dramati-
cally different growth substrates for microorganisms (Strickland
et al., 2009; Ushio et al., 2008; Wardle et al., 2009; Wu et al., 2011),
due to variation in plant species’ functional traits, such as leaf litter
carbon and nutrient concentrations (Cornwell et al., 2008; De Deyn
et al., 2008). As a result, soil microbial community composition
often associates with the composition of the plants in the overlying
vegetation (Slabbert et al., 2010; Yarwood et al., 2010). Abiotic
environmental properties can also sharply define the composition
and function of soil microbial communities. Factors such as soil
temperature (Fierer et al., 2005), moisture (Hollister et al., 2010), pH
(Rousk et al., 2010), nutrient availability (Cleveland et al., 2004;
Cusack et al., 2011), and redox potential (DeAngelis et al., 2010) are
recognized as important determinants of microbial growth and
survival, and as such, can influence the structure of soil microbial
communities. Despite recent advances revealing the incredible
diversity of microorganisms belowground, even basic ecological
identification and interpretation of these patterns, such as the
associations between soilmicrobial community composition and the
characteristics of the plant communities that these soils support,
remains rudimentary at best (Fierer et al., 2007a).

As a first step towards understanding the biotic and abiotic
factors that contribute to variation in microbial communities in
tropical soils, we quantified the structure and composition of
bacterial communities in two contrasting soils underlying Bornean
rain forest. These soils share similar amounts of litterfall, but differ
markedly in their rates of leaf litter decomposition (Baillie et al.,
2006; Palmiotto, 1998), and represent the extremes of an edaphic
gradient that strongly influences tree species composition (Davies
et al., 2005). One of the soils is sandstone-derived, nutrient-
depleted, and well-drained (sandy loam), and the other is shale-
derived, less nutrient-depleted, and less well-drained (clay)
(Table 1) (Baillie et al., 2006; Tan et al., 2009). The half-life of
aggregated leaf litter on the sandy loam soil is three times longer
than for litter on clay (Palmiotto, 1998). The slower rates of
decomposition on sandy loam cause standing forest-floor necro-
mass to be threefold larger than on clay (Baillie et al., 2006),
resulting in higher total soil carbon (Table 1).

In addition to their disparate soil properties, the variation in
decomposition rates of these soils may be due to differences in the
leaf litter resources available, resulting in selection of distinct
microbial communities. Supporting this hypothesis are the findings
that the sandy loam and clay soils support dramatically different
assemblages of tree species (Davies et al., 2005), resulting in large
shifts in their leaf functional traits that are relevant for leaf litter
decomposition (Russo et al., 2010; S.E. Russo, unpub. data). Relative
to tree species typical of clay, fresh leaves of sandy loam specialists
are significantly tougher and thicker, likely due to their total carbon
contents and higher cellulose and lignin contents per unit area (S.E.
Russo, unpub. data). Leaves of sandy loam specialists also have
lower concentrations of N and P and greater C:N and C:P ratios (S.E.
Russo, unpub. data). These differences are also likely to characterize
recently fallen leaf litter, as fresh leaf and leaf litter traits are
strongly correlated at this site (Kurokawa and Nakashizuka, 2008),
and aggregated leaf litter on sandy loam has significantly lower
concentrations of every nutrient examined (Table 1).

As a result of the strong variation between clay and sandy loam
soils in the abiotic environment and the consequent effects on leaf
litter resources available for microbial colonists, we predicted that
soil bacterial communities would show covariation with soil type
and, ultimately, the effects of soil type on vegetation, between the
clay and sandy loam soils. Given the between-soil differences in
carbon and nutrient resources, we anticipated the variation to
reflect the copiotrophiceoligotrophic resource-use spectrum
proposed by Fierer et al. (2007a), in which bacterial strategies exist
on a continuum from copiotrophic bacteria that are abundant in
nutrient-rich environments with high carbon availability to oligo-
trophic bacteria that are abundant in environments with low
carbon availability. This would translate into communities domi-
nated by Proteobacteria and Bacteriodetes in the more resource-
rich conditions in the clay soil, compared to communities domi-
nated by Acidobacteria in the sandy loam. Here, we explore these
hypotheses by examining the community structures of sandy loam
and clay soils using both taxonomic and phylogenetic analyses of
16S rRNA by pyrosequencing and microarray-based approaches.
Our results show clear associations of soil bacterial community
structure with soil type and the overlying tree community.

2. Materials and methods

2.1. Study system

Soil bacterial communities were characterized in Lambir Hills
National Park, Sarawak, Malaysia (4�110 N, 114�010 E). The Park
encompasses 6800 ha of lowlandmixed dipterocarp forest with the
highest tree species richness recorded in the Palaeotropics (Ashton
and Hall, 1992; Lee et al., 2002). The forest is old-growth forest that
has never been logged and experiences only natural forms of
disturbance. Based on mortality rates, the longevity of many of the
shade-tolerant tree species in this forest likely exceeds several



S.E. Russo et al. / Soil Biology & Biochemistry 55 (2012) 48e5950
hundred years. Rainfall is ca. 3000mm/y, lacking awell-defined dry
season, with all months averaging >100 mm (Watson, 1985).
Monthly mean temperatures vary little, ranging from 26 to 28 �C,
and diurnal temperature shifts are <10 �C (Watson, 1985). In 1991,
a 52-ha plot (hereafter, Lambir) was established in the Park
followingmethods used in similar studies by the Center for Tropical
Forest Science (Condit, 1998).

The soils within the Lambir plot lie on an edaphic gradient and
range from coarse loams that are sandstone-derived, leached,
nutrient-depleted, and well-drained, with substantial raw humus,
to clays that are shale-derived, less nutrient-depleted, and lesswell-
drained, with little raw humus (Baillie et al. 2006; Tan et al. 2009).
Four soil-habitats were defined along this gradient, based on vari-
ation in nutrient contents (total C, N and P and exchangeable K, Ca
and Mg) and elevation, and each 20 � 20 m grid square with in the
Lambir plot was categorized as one of these soil habitats (Davies
et al. 2005). Here, we focus on the soils at the extremes of the
gradient, sandy loam and clay, that are the most divergent in soil
properties, including total carbon and decomposition rate (Table 1).
Both soils are acidic, but surface soil volumetric water content is
significantly greater on clay than sandy loam in all months, with
values on clay reaching >30% (Russo et al., 2010). Relative to other
tropical soils, the clay soil at Lambir has low to very low Ca- and
P-fertility, but is moderately fertile for K andMg, although the latter
are not in immediately accessible forms. The sandy loam is less
fertile for all nutrients, with reduced cation exchange capacity, but
greater organic carbon content (Baillie et al. 2006; Tan et al. 2009).

The high tree species richness at Lambir is at least partly
attributable to high beta-diversity, arising from substantial turn-
over of species composition and congeneric replacements between
soil-defined habitats along the edaphic gradient (Lee et al. 2002;
Davies et al. 2005). Among the 764 tree species within the Lambir
plot tested, 73% were soil specialists, having distributions signifi-
cantly aggregated on one or two soil habitats, and only 13% were
generalists, having a completely neutral distribution with respect
to the edaphic gradient (Davies et al. 2005). These dramatic shifts in
tree species composition between forests on sandy loam and clay
(Table S1, Fig. S1) are associated with shifts in tree functional traits
potentially influencing the resources available to microbial
decomposers. Leaf litter falling on clay is higher in all measured
nutrient concentrations, compared with sandy loam, although total
mass of leaf litter input is similar (Table 1).

2.2. Field sampling and DNA isolation

Surface soils were sampled on two rain-free days during the
early monsoon season, which represents a period of active leaf
litter decomposition, from the centers of 17 randomly selected
20 � 20 m squares within the 52-ha Lambir plot that had been
classified as either clay (n ¼ 10 locations) or sandy loam (n ¼ 7
locations). Leaf litter was removed from the soil surface, and three
2-cm wide, 10-cm deep soil cores were taken at each location and
homogenizedwithin a sterileWhirl-pack bag (Nasco, Fort Atkinson,
WI, USA). DNA was isolated immediately from 0.25 g of soil from
each homogenized sample using Power Soil DNA Isolation kits (MO
BIO Laboratories, Inc., Carlsbad, CA, USA). DNA was concentrated
using 5 M NaCl and 100% cold ethanol.

2.3. PhyloChip processing, scanning, probe set scoring and
normalization

Genomic DNA from soil samples was used as template in PCR
reactions foramplificationof16S rRNAgenesequenceasdescribed in
(Ivanov et al., 2009). Briefly, eight replicate polymerase chain reac-
tionswere prepared for each sample containing final concentrations
ofw1 ng gDNA template, 0.02 U/mL ExTaq (Takara Bio Inc.),1X ExTaq
buffer, 0.2 mM dNTP mixture, 1 mg/mL Bovine Serum Albumin (BSA),
and 300 pM each of universal bacterial primers: 27F (50-AGAGTTT-
GATCCTGGCTCAG-30) and 1492R (50-GGTTACCTTGTTACGACTT- 30).
Tominimize PCR bias due to variable template annealing efficiencies
and random effects, PCR was performed on a BioRad iCycler with an
eight temperature annealing gradient (48e58 �C) and the following
conditions: 95 �C (3 min), followed by 30 cycles of 95 �C (30 s),
annealing (30 s), 72 �C (2min), andafinal extensionat72 �C (10min).
Reactionswere combined for each sample and concentratedwith0.8
volumes isopropanol, washed twice with ice cold 70% ethanol and
resuspended in 50 mL nuclease-free water.

2.3.1. PhyloChip microarray analysis of 16S rRNA genes
A mass of 500 ng of pooled PCR amplicons of each sample were

spiked with known concentrations of amplicons derived fromyeast
and bacterial metabolic genes. This mix was fragmented to
50e200 bp using DNase I (0.02 U mg�1 DNA, Invitrogen, Carlsbad,
CA, USA) and One-Phor-All buffer (GE Healthcare, Piscataway, NJ,
USA) following the manufacturer’s protocols. The mixture was then
incubated at 25 �C for 20 min and 98 �C for 10 min before biotin
labeling with a GeneChip DNA labeling reagent kit (Affymetrix,
Santa Clara, CA, USA) following the manufacturer’s instructions.
Next, the labeled DNA was denatured at 99 �C for 5 min and
hybridized to custom-made Affymetrix GeneChips (16S rRNA genes
PhyloChips) at 48 �C and 60 rpm for 16 h. PhyloChip washing and
staining were performed according to the standard Affymetrix
protocols described previously (Masuda and Church, 2002).

Each PhyloChip was scanned and recorded as a pixel image, and
initial data acquisition and intensity determination were per-
formed using standard Affymetrix software (GeneChip microarray
analysis suite, version 5.1). Background subtraction, data normali-
zation and probe pair scoring were performed as reported previ-
ously (Brodie et al., 2007; DeSantis et al., 2007, 2006). The positive
fraction (PosFrac) was calculated for each probe set as the number
of positive probe pairs divided by the total number of probe pairs in
a probe set. Taxa were deemed present when the PosFrac value
exceeded 0.90. Intensities were summarized for each taxon/probe-
set using a trimmed average (highest and lowest values removed
before averaging) of the intensities of the perfect match probes
(PM) minus their corresponding mismatch probes (PM).

2.3.2. Normalization of PhyloChip data of bacterial community
composition

To correct for variation associated with quantification of
amplicon target (quantification variation), and downstream varia-
tion associated with target fragmentation, labeling, hybridization,
washing, staining and scanning (microarray technical variation),
a two-step normalization procedure was developed. First, for each
PhyloChip experiment, a scaling factor best explaining the inten-
sities of the spiked control probes under a multiplicative error
model was estimated using a maximum-likelihood procedure as
follows. PhyloChip design contains control probes targeting
amplicons of bacterial metabolic genes and synthetic 16S rRNA
genes (spike-in probes). These are spiked in known quantities into
the final hybridization mix. To take advantage of the spiked pro-
besets, an optimization procedure similar to the one suggested in
Hartemink et al. (Hartemink et al., 2001) was implemented in R
software environment (http://www.r-project.org). This was previ-
ously described in detail in Ivanov et al. (2009).

2.4. Pyrosequencing and processing

Recovered DNA was amplified using barcoded 16S rRNA Pyro-
sequencing tags to achieve parallel sequencing of samples. The

http://www.r-project.org
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V1eV2 region of the 16S rRNA gene was amplified using bar-coded
fusion primers that contain the Roche-454 A or B sequencing
adapters (shown in italics), followed by a unique barcode sequence
(N) and the 50 end of primer: A-8FM 50-GCCTCCCTCGCGCCAT-
CAGNNNNNNAGAGTTTGATCMTGGCTCAG-30 and B-357R 50-GCCTT
GCCAGCCCGCTCAGCTGCTGCCTYCCGTA-30 (FLX chemistry primers).
All PCR reactions were quality-controlled for amplicon saturation
by gel electrophoresis; band intensity was quantified against
standards using GeneTools (Syngene) software. All PCR reactions
were quality-controlled for amplicon saturation by gel electro-
phoresis; band intensity was quantified against standards using
GeneTools (Syngene) software. For each region of a two-region
PicoTitre Plate, amplicon reactions were pooled in equal amounts
based on the GeneTools outputs to achieve to achievew5000 reads
per sample, and the resulting pooled sample was gel-purified.
Recovered products were quantified using picogreen (Invitrogen)
and a Qubit fluorometer (Invitrogen) and sequenced using Roche-
454 GS FLX chemistry.

Raw read output was quality filtered by discarding reads with
<150 bp, reads>500 bp, or reads with more than two base miscalls
(N); and average quality scores of Q � 20 were achieved for the full
length of each read (Benson et al., 2010; Kunin et al., 2010). Filter-
pass reads were parsed into their respective sample-specific bar-
code bins only if they matched the entire forward primer and
barcoded sequence. Forward, reverse primers and barcodes were
removed after binning. Data were filtered for chimeric sequences
using ChimeraSlayer (Caporaso et al., 2010). After initial filtering,
<0.5% of sequences were identified as chimeras.

Data from each sample was clustered based on k-mers using
a threshold of 97% sequence similarity with the CD-HIT-EST algo-
rithm (CD-HIT) (Li and Godzik, 2006). OTUs with <10 reads sum-
med across all samples were discarded. For each soil sample, the
numbers of reads in each OTU for each sample were standardized
by the total number of reads in that sample to obtain a measure of
relative abundance. Representative sequences from OTUs were
extracted and aligned with the Ribosomal Database Project (RDP)
aligner and phylogenic reconstruction based on fasttree maximum
likelihood (Price et al., 2009). Perl scripts were developed to create
the necessary inputs for UniFrac (see Statistical analysis). Samples
were also subjected to a RDP analysis (Cole et al., 2009), using the
web-based RDP Pyro Pipeline (http://pyro.cme.msu.edu/) as
previously described (Benson et al., 2010). The RDP classifier
assigns taxonomic rank to sequence reads by matching distribu-
tions of nucleotide substrings to a model defined from sequences of
known microorganisms. Sequences were separated by soil type
(sandy loam or clay) and aligned using the RDP aligner. They were
then clustered using RDP complete linkage clustering at
a maximum distance of 3% (corresponding to 97% sequence simi-
larity). Rarefaction curves for each soil type were created based on
the aligned sequences.

2.5. Statistical analysis

Three data sets were analyzed to identify differences between
clay and sandy loam in the community structure of soil bacteria: (1)
OTUs from the PhyloChip microarray data and OTUs defined from
sequence data analyzed using (2) CD-HIT and (3) RDP classifier.
Analyses were performed using the statistical software, R (R Core
Development Team, 2009).

Differences between soils in the richness of OTUs were tested
using rarefaction (Gotelli and Colwell, 2001) for sequence data
analyzed using RDP and CD-HIT. Rarefaction curves were generated
with the RDP online platform. Rarefaction analysis of OTUs from
CD-HIT was performed using the vegan R package (Oksanen et al.,
2011). Student’s t-tests were used to test for differences in
richness for RDP-analyzed sequence and microarray data on
a taxonomic rank-specific basis.

Differences between soils in their bacterial community struc-
ture were analyzed using principal components (PCA) and non-
metric multidimensional scaling (NMDS) analyses (Legendre and
Legendre, 1998). PCAs used OTUs organized by taxonomic rank
for RDP-analyzed sequence data and all OTUs for CD-HIT-analyzed
sequence data, weighted by relative abundance, whichwas taken to
be the number of amplicons of an OTU divided by the total number
of amplicons present in a sample. NMDS analyses used rank-
specific OTUs for microarray data, with the Mountford distance
metric (presence/absence only) (Mountford, 1962), three dimen-
sions, and 100 randomly chosen starting parameter values; opti-
mizations were run until convergence. Permutational multivariate
analysis of variance (pMANOVA) (Anderson, 2001; Zapala and
Schork, 2006), which is analogous to redundancy analysis, was
used to describe how variation in metric distance matrices was
attributed to the predictor variable, soil type. Matrices of the
community-level distances between sampling locations were
constructed based on metrics of relative abundance of OTUs using
the Jaccard distance metric (Magurran, 2004) and based on pres-
ence/absence of OTUs using the Mountford distance metric and
were subjected to pMANOVA to test the hypothesis that composi-
tion of bacterial OTUs differed between the clay and sandy loam
using CD-HIT- and RDP-analyzed sequence data (weighted and
unweighted) and microarray data (unweighted only). Tests with
the latter two data sets were by taxonomic rank. Weighted and
unweighted distancematrices based on the UniFrac distance metric
(Hamady et al., 2009; Lozupone and Knight, 2005), which accounts
for phylogenetic relatedness of taxa in addition to compositional
differences, were created using the phyloseq R-package (McMurdie
and Holmes, 2012). In all analyses, unweighted analyses reflect
differences in composition only, whereas weighted analyses reflect
differences in composition and abundance. The most important
OTUs determined from RDP-analyzed sequence data at taxonomic
ranks from genus to phylumwere identified in clay and sandy loam
based on the sum across all samples within a soil type of the
relative abundances of an OTU within a sample.

Quantifying the phylogenetic structure of communities can aide
interpretation of how the composition of communities depends on
the evolution of phenotypic traits, related to two processes involved
in the assembly of communities: environmental filtering and
competitive exclusion. Environmental filtering occurs when
composition is limited to taxa that can coexist in a community on
the basis of their tolerance of the abiotic environment, whereas
niche-competitive interactions among taxa limit their long-term
coexistence (Weiher and Keddy, 1999). Assuming that closely
related taxa share similar phenotypes, these two processes make
opposing predictions about the phylogenetic relatedness of taxa
co-occurring in a community (Webb et al., 2002). If closely related
species share similar physiological limitations, then environmental
filtering will tend to cause closely related taxa to co-occur (phylo-
genetic clustering). On the other hand, competitive exclusion
should limit the coexistence of closely related taxa if they share
limiting resources, leading to a pattern inwhich closely related taxa
tend not to co-occur (phylogenetic evenness). For sequence data
analyzed using CD-HIT, phylogenetic structure of soil bacterial
communities was quantified using the picante R package (Kembel
et al., 2010). Phylogenetic diversity (Faith, 1992) was estimated for
each sample, and differences between soils were tested using
Wilcoxon rank sums test. The average phylogenetic relatedness of
OTUs and amplicons on each soil was estimated using the mean
phylogenetic distance (MPD), which is the average distance
between two OTUs (or amplicons, for abundance-weighted anal-
yses) randomly chosen from a community, and using mean nearest

http://pyro.cme.msu.edu/


Fig. 1. Richness of bacterial operational taxonomic units (OTUs) in two soils, sandy
loam and clay, underlying Bornean rain forest: the accumulation of OTUs with the
number of sequences sampled, based on rarefaction analysis of pyrosequencing data at
97% sequence similarity of 16S rRNA amplicons using the Ribosomal Database Project
Classifier pipeline. Fine gray lines show upper and lower 95% confidence intervals.
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taxon distance (NTD), which is the mean distance of each species to
its closest relative in the community (Webb et al., 2002). Net
relatedness index (NRI) and the nearest taxon index (NTI) were
calculated as in Webb et al. (2002). They represent measures of
effect size and are calculated as the difference between the phylo-
genetic distances (MPD or NTD, respectively) of observed and null
communities, standardized by the standard deviation of distances
in the null community. Mean pairwise distance tends to be more
sensitive to patterns of evenness or clustering across the entire
phylogeny, whereas NTD tends to be more sensitive to variation in
at the tips of the phylogeny. Probabilities of two-tailed tests were
calculated as the minimum of either twice the number of MPD or
NTD values higher or lower than the observed value divided by the
number of randomizations. Whether OTUs (or amplicons) were
more closely or distantly related to each other than expected by
chance was tested by comparison of observed MPD values with the
distribution ofMPD values from randomly assembled communities.
Null communities were assembled using the independent swap
algorithm (Gotelli, 2000), which maintains the taxonomic richness
and abundance distribution, but shuffles the identities of the OTUs
occurring in each community. The pairwise probability of OTUs
co-occurring in the same soil type or in the same sampling location
was estimated using Jaccard’s co-occurrence index (Magurran,
2004). The co-occurrence probabilities were correlated with pair-
wise phylogenetic distance of OTUs in each soil type or sample.
Whether observed correlation coefficients were different from
those expected by chance was tested by comparison with the
distribution of p-values of correlations from communities randomly
assembled using the null model described above.

A Mantel test (Mantel, 1967) was used to quantify the multi-
variate correlation between tree and bacterial communities. Basal
area was calculated for each tree species in the 20 m by 20 m area
surrounding each location where bacterial communities were
quantified, based on the 2003e2004 Lambir plot tree census data.
The size of this area was chosen based on the crown diameter of
canopy trees near the soil sampling location that could contribute
leaf litter to the location. Bacterial OTUs and abundanceswere based
on CD-HIT-analyzed pyrosequencing data. Statistical significance of
the correlation coefficient was based on 10,000 random permuta-
tions of the distance matrices calculated using the Jaccard metric.

3. Results

3.1. Taxonomic richness and composition in sandy loam and clay
soils

The richness of bacterial operational taxonomic units (OTUs)
differed between soils (Fig. 1, Table 2). Based on RDP classifier
(RDP), 18% of 16S rRNA amplicons were unclassified with respect to
any taxonomic rank. Of those that were classified, richness of all
taxa and taxa unique to a soil type were higher in clay, but this
difference was only statistically significant at the rank of phylum
(Table 2). Rarefaction curves of OTUs defined at 97% sequence
similarity through the RDP pipeline showed significantly greater
richness in clay, but neither curve reached an asymptote (Fig. 1). At
97% sequence similarity, an analysis using CD-HIT identified a total
of 1983 OTUs. Ninety-nine percent (1963) of these OTUs were
observed in clay, compared to only 78% (1549) observed in sandy
loam. A core set of 1529 of the OTUs (77%) could be found in both
soils. Twenty-two percent (434) and 1% (20) of OTUs were unique
to clay and sandy loam, respectively. As is typical of complex
microbial communities, many of the OTUs were rare and sparsely
distributed across samples. A total of 62% of all amplicons were
from OTUs that occurred at a total abundance of <100 reads,
summed across all samples (Fig. S2). In keeping with the higher
number of OTUs in clay, this soil also had significantly greater OTU
richness than did sandy loam based on rarefaction (p < 0.05). In
contrast to the pyrosequencing data, the PhyloChip analysis
showed that richness of all OTUs and OTUs unique to a soil type
were more similar across soils, with no significant differences in
richness at any taxonomic rank (Table 2).

Multivariate analyses of OTUs, weighted by relative abundance,
revealed significant differences between the structure of bacterial
communities in clay and sandy loam soil, based on both sequence
and microarray data (Fig. 2AeC, Figs. S3, S4). For CD-HIT-defined
OTUs, pMANOVA showed significant differences in structure
based on composition only (presence/absence) and based on
abundance-weighted composition (F(1,16) ¼ 13.83, p ¼ 0.014 and
F(1,16) ¼ 2.44, p< 0.001, respectively; Fig. 2AeC). Based on sequence
data analyzed with RDP, differences between soils in composition
were significant at the ranks of genus and order (genus:
F(1,16) ¼ 1.49, p ¼ 0.017; family: F(1,16) ¼ 1.29, p ¼ 0.142; order:
F(1,16) ¼ 3.47, p ¼ 0.037; class: F(1,16) ¼ 5.48, p ¼ 0.058; phylum:
F(1,16) ¼ 6.46, p ¼ 0.194). The result based on presence/absence
contrasted somewhat with those for abundance-weighted
composition of bacterial communities, which displayed statisti-
cally significant soil-related structure at the ranks of order, class,
and phylum (genus: F(1,16) ¼ 1.22, p ¼ 0.191; family: F(1,16) ¼ 1.40,
p ¼ 0.150; order: F(1,16) ¼ 1.90, p ¼ 0.047; class: F(1,16) ¼ 1.96,
p ¼ 0.026; phylum: F(1,16) ¼ 2.49, p ¼ 0.012; Fig. S3). In contrast,
based on microarray data, composition of bacterial communities
was significantly different between soils only at the family level
(family: F(1,16)¼ 1.86, p¼ 0.037; order: F(1,16)¼ 1.54, p¼ 0.216; class:
F(1,16) ¼ 0.86, p ¼ 0.468; phylum F(1,16) ¼ 1.06, p ¼ 0.414; Fig. S4).

Based on RDP-analyzed sequence data, clay and sandy loam
were dominated by three and four phyla, respectively, and these
phyla comprised >90% of the sequences from each soil (Fig. 3).
Bacteria in clay were dominated by Acidobacteria (54% of the
amplicons identified to Phylum in clay), whereas Proteobacteria
was the most abundant phylum in sandy loam (43% of the ampli-
cons identified to Phylum in sandy loam). The relative abundance of
taxonomic groups within the Acidobacteria was similar in the two
soils (Fig. 4), but orders of Proteobacteria were more equitably
distributed on sandy loam than on clay (Fig. S5). Of the top tenmost
abundant classes, the following were more abundant on sandy



Table 2
Numbers of bacterial operational taxonomic units (OTUs) at different taxonomic ranks identified in two soil types underlying Bornean rain forest using the Ribosomal Database
Project Classifier. Total values reflect all OTUs present across both soils or on each soil; unique values reflect OTUs present on only one soil; shared values reflect OTUs present
on both soils. Probabilities are from a Student’s t-test of the difference in mean OTU richness between soils, with statistically significant tests in bold typeface.

Taxonomic rank Total no. OTUs Clay Sandy loam OTUs shared no. (%) Probability

All OTUs no. (%) Unique OTUs no. (%) All OTUs no. (%) Unique OTUs no. (%)

RDP classifier e 16S rRNA amplicons
Genus 197 171 (87%) 56 (28%) 141 (72%) 26 (13%) 115 (58%) 0.376
Family 94 87 (93%) 16 (17%) 78 (83%) 7 (7%) 71 (76%) 0.608
Order 40 37 (93%) 5 (13%) 35 (88%) 3 (8%) 32 (80%) 0.280
Class 24 22 (92%) 5 (21%) 19 (79%) 2 (8%) 17 (71%) 0.060
Phylum 19 16 (84%) 6 (32%) 13 (68%) 3 (16%) 10 (53%) 0.018

PhyloChip
Family 164 161 (98%) 4 (2%) 160 (98%) 3 (2%) 157 (96%) 0.416
Order 100 98 (98%) 3 (3%) 97 (97%) 2 (2%) 95 (95%) 0.204
Class 51 51 (100%) 0 (0%) 51 (100%) 0 (0%) 51 (100%) 0.674
Phylum 42 42 (100%) 0 (0%) 42 (100%) 0 (0%) 42 (100%) 0.845
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loam than on clay (Fig. 5; values indicate the percent of amplicons
in sandy loam versus clay): Actinobacteria (6% versus 4%), Beta-
proteobacteria (7% vs. 3%), Clostridia (6% vs 1%), Bacilli (4% vs. 1%),
and Gammaproteobacteria (5% vs. 1%). More broadly, although
relative abundances of OTUs were strongly correlated between soil
Fig. 2. Principal components analysis of soil bacterial communities in two Bornean rain fo
loam: dashed lines). The fine line gives the minimum convex hull, and the bold line gives the
weighted taxonomic analysis of OTUs defined using CD-HIT using a threshold of 97% seque
Bornean rain forests based on 16S rRNA amplicons: an analysis of phylogenetic distances unw
sequence similarity.
types at each taxonomic rank, there was still considerable variation
(Fig. S6). In both RDP-analyzed sequence and microarray data sets,
abundant taxa tended to be abundant on both soil types, although
not identically ranked in abundance. The taxa unique to a soil type
were limited to clay (Table S2). The eighth most abundant phylum
rest soils based on 16S rRNA amplicons from pyrosequencing (clay: solid lines, sandy
95% confidence ellipse for the centroid for each soil type. (AeC) depict an abundance-
nce similarity. (DeF) Phylogenetic beta-diversity of soil bacterial communities in two
eighted by abundance (UniFrac) of OTUs defined with CD-HIT using a threshold of 97%



Fig. 3. Relative abundance of bacterial phyla in two Bornean rain forest soils based on
16S rRNA amplicons from pyrosequencing analyzed using RDP. The percent of all
amplicons on a soil type that were classified to each phylum is indicated by the stacked
bars. The order of phylum names follows the labels for sandy loam, except for Nitro-
spira, which was uniquely found on clay. Rare OTUs include phyla with <100 ampli-
cons summed across all samples on a soil type.

Fig. 4. Relative abundance of bacterial taxonomic groups (approximately genera)
within Acidobacteria in two Bornean rain forest soils based on 16S rRNA amplicons
from pyrosequencing analyzed using RDP. The percent of all amplicons on a soil type
that were classified to each group is indicated by the stacked bars. The order of
taxonomic names follows the labels for sandy loam, except for GP7, which was
uniquely found on clay. Rare OTUs include those with <100 amplicons summed across
all samples on a soil type.
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in RDP-analyzed sequence data, Nitrospira, was only found on clay
(Fig. 3). The relative abundance of this group also caused higher
taxonomic levels including them to show numerical dominance,
with the genus Nitra ranked as the 18th most abundant and its
corresponding family, the Nitrospiraceae, ranked as the 23rd most
abundant family. The microarray data identified the family Nitro-
spiraceae in both soils and failed to yield significant quantitative
differences. Chloroflexi was the 12th most abundant phylum in the
RDP-analyzed sequence data and uniquely found in clay. The 19th
most abundant class, Anaerolineae, was unique to clay. Paeniba-
cillaceae, the 53rd most abundant family, was also unique to clay,
as was the 25th most abundant genus in the RDP-analyzed
sequence data, GP7, in the Acidobacteriaceae.

The significant variation in soil bacterial community structure
between clay and sandy loam was also related to the tree
community structure near the sampling location. Based on CD-HIT-
defined OTUs, the structures of the tree and bacterial communities
were significantly correlated (Mantel test; r ¼ 0.20, p ¼ 0.013). This
correlationwas, however, due to the differences between soil types
in tree species composition and abundance, since within-soil
correlations between the tree and bacterial communities were
not statistically significant (clay: r ¼ 0.15, p ¼ 0.185; sandy loam:
r ¼ �0.40, p ¼ 0.934).
Fig. 5. Relative abundance of bacterial classes in two Bornean rain forest soils based on
16S rRNA amplicons from pyrosequencing analyzed using RDP. The percent of all
amplicons on a soil type that were classified to each class is indicated by the stacked
bars. The order of taxonomic names follows the labels for sandy loam, except for
Nitrospira, which was uniquely found on clay. Rare OTUs include those with <100
amplicons summed across all samples on a soil type.
3.2. Patterns in phylogenetic community assembly

Based on CD-HIT-analyzed sequence data, there were no
significant differences between bacterial communities in phyloge-
netic diversity, as measured by Faith’s index (Wilcoxon W ¼ 45,
p ¼ 0.364). Phylogenetic multivariate analyses of OTUs revealed
differences between the composition of bacterial communities in
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clay and sandy loam soil (Fig. 2DeF), and these differences were
statistically significant when analyses were both weighted and
unweighted by relative abundance (weighted, F(1,16) ¼ 2.00,
p¼ 0.001; unweighted, F(1,16) ¼ 3.22, p¼ 0.002). Analyses that were
weighted and unweighted by abundance showed similar phyloge-
netic community structure based on mean phylogenetic distance
(MPD) (Table 3). Both OTUs and individuals (sequences) in clay had
significantly lower MPD, indicating that they were more closely
related to each other than in randomly assembled communities.
However, OTUs and individuals in sandy loam were significantly
less related to each other compared with randomly assembled
communities. Analyses using nearest taxon distance (NTD)
(Table 3) were consistent with those usingMPD for clay in that NTD
was significantly lower than in null communities for both weighed
and unweighted analyses. However, for sandy loam, OTUs and
individuals showed similar phylogenetic clustering based on NTD
compared to that in null communities.

There was a slightly negative, statistically significant correlation
between the probability of OTUs co-occurring in the same soil type
and the phylogenetic distance between them (r¼�0.05, p< 0.001).
This correlation coefficient was smaller than that for all randomly
assembled communities (p < 0.001), indicating that more closely
related taxa had a very slight tendency to co-occur more often than
moredistantly related taxa. Among sampling locations on clay, there
was a negative, statistically significant correlation between the
probability of OTUs co-occurring in the same soil sample and the
phylogenetic distance between them (r¼�0.12, p< 0.001), and this
correlation coefficient was smaller than that for all randomly
assembled communities (p < 0.001), indicating that closely related
taxa had a higher probability of occurring together in the same
sample, compared to distantly related taxa. Among sampling loca-
tions on sandy loam, there was also a slightly negative, statistically
significant correlation between the probability co-occurrence in the
same sample andphylogenetic distance.However, the coefficient for
sandy loam was closer to zero than for samples on clay (r ¼ �0.06,
p < 0.001), but still smaller than that for all randomly assembled
communities (p < 0.001), indicating that closely related taxa had
only a very weak tendency to co-occur in the same location.

4. Discussion

Based on both pyrosequencing and microarray data, we found
significant soil-related taxonomic and phylogenetic differences in
the structure of soil bacterial communities in two Bornean soils.
These differences were also significantly correlated with the
structure of the overlying tree community in this rain forest. This is
the first study to link soil and vegetation types to the soil bacterial
community using high-throughput sequencing methods in one of
the most tree species-rich tropical forests on Earth. Due to
plantesoil feedbacks, we might expect the bacterial communities
underlying tree species-rich forests to be similarly diverse, and our
observed taxon-accumulation curves provide supporting evidence
Table 3
Phylogenetic structure of bacterial communities in clay and sandy loam soils underlying
(NTD) were estimated for observed (Obs.) and null communities, and net taxon index (
randomizations. See main text for details of null community construction. Probabilities a
values greater or less than the observed values for each community (rank).

Clay

Obs. Null NRI or NTI Rank of Obs. parameter P

MPD, unweighted 1.796 1.805 �3.62 22
MPD, weighted 1.845 1.862 �5.73 2 <

NTD, unweighted 0.100 0.102 �2.92 250
NTD, weighted 0.086 0.092 �5.92 1 <
for this prediction. Although several studies outside of tropical
forest have found differences in bacterial communities of soil
underlying different vegetation types (e.g., Bezemer et al., 2006;
Hackl et al., 2004; Pennanen et al., 1999; Wardle, 2002), fewer have
dissociated the effects of climate from soil abiotic and vegetation
properties (Mitchell et al., 2010). Because, in our study, these two
soils are located less than a few hundred meters from each other at
a single site, the differences that we observed can be attributed
primarily to soil and vegetation properties.

Both the clay and sandy loam soils were dominated by two
Phyla, Acidobacteria and Proteobacteria, groups commonly found
in soil (Lauber et al., 2009; Nemergut et al., 2010). Specifically, the
soil with the faster decomposition rate and lesser total carbon, clay,
had greater richness of bacterial taxa and was dominated by the
Acidobacteria (ca. 54% of amplicons), whereas the sandy loam soil,
with the greater total carbon and slower decomposition rate was
dominated by the Proteobacteria (ca. 43% of amplicons). These
findings are inconsistent with predictions based on the
copiotrophiceoligotrophic resource-use spectrum (Fierer et al.,
2007a). Because these soils contrast dramatically in their abiotic
environmental properties and the composition of the forest over-
story, it is apparent that these sources of variation significantly
affect the underlying microbiome, and together, they are likely to
contribute to the observed variation in the decomposition rates of
organic matter.

4.1. Ecological inferences from community differences: possible
links to litter quality and anoxia

Greater richness of bacterial OTUs was observed in clay than
sandy loam with rarefied pyrosequencing data. Rarefaction curves
did not, however, level off, which is indicative of both the
substantial undiscovered diversity of microbial communities in soil
and the intense sampling required to characterize them (Fierer
et al., 2007b). Indeed, the shape of the abundance distribution of
OTUs across both soils suggests Preston’s veil line (Preston, 1948),
and, despite our relatively deep sampling, further diversity of less
abundant taxa may yet be unveiled. Nonetheless, the more abun-
dant taxa sampled by our methods still served as reliable estimates
of the associations between soil and vegetation type and the
underlying microbiome. The higher richness in clay can be expec-
ted due to the greater surface area for microorganisms provided by
the smaller sizes of clay particles. Analyses of the PhyloChip data
showed no differences in richness. However, this contrasting result
is likely due to the fact that it is not possible to rarefy hybridization-
intensity data, causing biases in comparisons of richness, if the
samples compared differ in the number of individuals (sequences)
per sampling unit or in taxon-abundance distributions (Gotelli and
Colwell, 2001), as was the case in our study. In addition, a more
limited set of OTUs is quantified using microarray, compared with
pyrosequencing, methods, as novel diversity cannot be detected.
We recognize that it is possible that a portion of the differences
Bornean rain forest. Mean phylogenetic distance (MPD) and nearest taxon distance
NTI) and net relatedness index (NRI) were calculated, respectively, based on 9999
re from two-tailed tests based on the number of randomizations with MPD or NTD

Sandy loam

-value Obs. Null NRI or NTI Rank of Obs. parameter P-value

0.004 1.788 1.777 3.60 9978 0.004
0.001 1.827 1.810 5.53 9999 <0.001
0.050 0.110 0.108 1.38 9286 0.142
0.001 0.105 0.100 3.63 9700 0.056
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between soil types that we observed could be attributable to
sequence variability resulting from PCR bias (e.g., Engelbrektson
et al. 2010). Our study design incorporated the use of multiple
techniques specifically designed for PCR-based analysis of micro-
bial communities in soils and maintained the use of the same
primer pairs across all samples in order to compare relative
abundances of dominant OTUs across soil types.

Despite the differences in the sensitivity of the two platforms,
both the pyrosequencing and PhyloChip approaches showed soil-
specific clustering of bacterial communities in multivariate anal-
yses, indicating that these communities are indeed distinct in terms
of composition and taxon-abundance distributions. Moreover, soil
bacterial communitystructurewas significantly related to thatof the
surrounding trees, indicating tree species compositional effects on
the soil microbiome. These effects were directly related to differ-
ences between soils in tree species composition and abundance, not
within-soil, local spatial variation in tree assemblages, and may be
due to the disparate biochemical composition of fresh leaves, and
hence, leaf litter, of the tree species that are dominant on each soil
type, tree-species-specific root exudates, or other indirect effects
involving tree species. Although the correlation between tree and
bacterial communities was significant, the coefficient was not large,
suggesting that other factors are also likely to influence the soil
microbiome. The soil and vegetation properties that available data
show to be themost disparate between these soils and that aremost
likely to affect bacterial growth and survival, and hence community
structure, are soil particle size, moisture, and nutrient availability
and the biochemical composition and structure of plant litter.

An ecological classification of soil microbial communities was
proposed by Fierer et al. (2007a), in which bacterial metabolic
strategies exist on a spectrum, paralleling the r- vs. K-selection
continuum, from copiotrophic bacteria that are abundant in
nutrient-rich environments with high carbon availability to oligo-
trophic bacteria that are abundant in environmentswith lowcarbon
and nutrient availability. Using sugar mineralization rates, these
authors demonstrated that in environments with ample available
carbon and nutrient resources, the abundance of copiotrophs, such
as Betaproteobacteria and Bacteriodetes, was positively correlated
with high rates of carbon mineralization. In contrast, in environ-
ments with lower rates of carbon mineralization and low resource
availability, oligotrophs, such as Acidobacteria, predominated.
Based on this classification,wewould anticipate that clay,which has
higher nutrient availability andmore rapid leaf litter decomposition
rates (Table 1), would harbor more Betaproteobacteria and Bacter-
iodetes than sandy loam, which is relatively nutrient poor with
a slower decomposition rate. Conversely, the Acidobacteria would
be more abundant on sandy loam. However, in our study, Acid-
obacteria were more abundant on clay than on sandy loam. The
contrasting result was also observed for the Betaproteobacteria and
Bacteriodetes, which were more abundant in sandy loam than clay.
Our results are inconsistent with those from a litter manipulation
study in Costa Rica that found greater abundances of Acidobacteria
in soil plots from which leaf litter had been removed (Nemergut
et al., 2010). In our study, the higher total soil carbon in sandy
loam is likely to bemore a reflection of the accumulated products of
decomposition, rather than the carbon resources available to
support it.Whilewehave notmeasured carbonmineralization rates
in these soils, their differences in total soil carbon and forest floor
necromass indicate that sandy loam stores more carbon, likely as
a consequence of longer residence time of organic matter due to
slower decomposition and carbon mineralization rates (Palmiotto,
1998; Baillie et al. 2006). The slower decomposition rate of leaf
litter on sandy loam could also be explained by lower microbial
biomass, which would be expected if soil particle size is negatively
correlated with microbial biomass.
Leaf litter of trees typical of sandy loam provides more total
carbon, but less nitrogen and other nutrients, to the indigenous soil
microbial community than does clay (Table 1). However, that
carbon is likely to be of more complex, potentially more recalci-
trant, forms, given the higher lignin and cellulose contents of the
fresh leaves of tree species typical of sandy loam (S.E. Russo, unpub.
data). While abiotic soil properties and nutrient availability have
direct effects on decomposition (Hobbie and Gough, 2004), the
biochemical and structural properties of leaves reflect their
decomposability (Hobbie, 2000; Lovett et al., 2004; Swift et al.,
1979; Wardle, 2005). Plant species with leaves exhibiting higher
photosynthetic rates and lower structural investment costs are
more decomposable (Cornwell et al., 2008; Santiago, 2007), espe-
cially in abiotic environments favorable to decomposition, such as
wet tropical systems (Couteaux et al., 1995;Wieder et al., 2009) like
this Bornean forest, which receives ca. 3000 mm annual rainfall.
The rapid leaf litter decomposition rate and lower C:N ratios
observed in clay soil in our study indicate that the structural carbon
present may be of simpler forms and likely more available to
decomposer microbiota. Whether more recalcitrant forms of
carbon, such as lignin, slow decomposition, as has been observed in
some tropical systems (Hirobe et al., 2004; Hobbie, 2000), but not
others (Raich et al., 2007), may depend on the local abundance of
fungal decomposers that can convert the most complex carbon
forms to the simpler ones that are subsequently made available to
the majority of bacteria (Couteaux et al., 1995; Dix and Webster,
1995; Hattenschwiler et al., 2005; Wu et al., 2011), as well as, on
the availability of nutrients (Scott and Binkley, 1997) and more
labile carbon sources (Klotzbücher et al., 2011). Although our study
cannot disentangle these complex plantesoil feedbacks, it provides
a basis for developing hypotheses to explain important mecha-
nisms affecting edaphic variation in the community structure of soil
bacteria.

In addition to fungal degradation of structural organic carbon,
bacteria such as Actinobacteria, abundant on sandy loam, could
solubilize complex carbon substrates, such as lignin (Lynd et al.,
2002; Pasti et al., 1990; Ralph, 2005). Further studies are required
to test this hypothesis, as cellulolytic activity is characteristic of
several taxa higher in abundance on sandy loam, such as some
members of the Bacteriodetes, Betaproteobacteria, Gammaproteo-
bacteria, Actinobacteria, and Firmicutes (Lynd et al., 2002). Much
less is known with regard to degradation of structural organic
carbon by Acidobacteria, as very few cultured representatives of
this Phylum are available for physiological studies. However,
sequenced genomes of three cultured Acidobacteria revealed
sequences encoding for proteins capable of degrading structural
carbon, such as cellulose and hemicellulose (Ward et al., 2009). A
recent Acidobacterial isolate from peatland soils was capable of
degrading cellulose, albeit at a slow rate (Pankratov et al., 2011).

Decomposition and mineralization of organic carbon results in
the consumption of oxygen via respiratory processes, thereby
reducing oxygen availability in the soil. Thus, readily utilized
organic matter will result in rapid oxygen loss, contributing to the
generation of anaerobic microsites, especially in soils with higher
bulk density, such as the clay soil at Lambir. The resulting envi-
ronment would favor microaerophilic and facultative or obligately
anaerobic microbiota. Redox conditions and fluctuations within
tropical forest soils have been demonstrated to play a role in
shaping the microbial community structure (DeAngelis et al. 2010).
Thus, the microbial community identified in clay could also be
a reflection of hypoxic conditions favoring microaerophilic and the
facultative or obligate anaerobic bacteria, resulting in environ-
mental filtering of the bacterial community, as our phylogenetic
community analyses suggest (see below). Hypoxic conditions have
been described as a physiological requirement for Nitrospira spp.
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(Lücker et al., 2010), which was specific to clay, and the Veillo-
nellaceae (Saddler and Bradbury, 2005), which was more abundant
in clay (Table S3), thus supporting the hypothesis of lower oxygen
availability in clay. Conversely, aerobic conditions would be more
likely to prevail on the well-drained sandy loam. Consistent with
this hypothesis, is the increased abundance of the Xanthomonads,
obligate aerobic cellulolytic bacteria (Lynd et al., 2002; Saddler and
Bradbury, 2005), suggesting greater oxygen availability.

Although both clay and sandy loam are acidic, the pH of the clay
soil is lower. The relative abundances of major bacterial classes on
each soil type match predictions based on this difference in soil pH
(Lauber et al., 2009), in that Acidobacteria were less abundant,
Actinobacteria, Beta- and Gammaproteobacteria, and Bacteriodetes
were more abundant, and Alphaproteobacteria were similarly
abundant on sandy loam, compared with clay, soil.

4.2. Soil-related differences in phylogenetic community structure

In clay, OTUs and individuals tended to be more phylogeneti-
cally related to each other than expected in randomly assembled
bacterial communities, and more closely related OTUs co-occurred
more often than more distantly related ones. Such phylogenetic
clustering suggests that environmental filtering, a reduction in the
range of successful strategies among coexisting taxa on the basis of
tolerance of the abiotic environment (Weiher and Keddy, 1999), is
an important ecological process in the assembly of bacterial
communities on clay. This interpretation is valid provided that
closely related bacterial taxa are more likely to share similar
functional traits than are distantly related taxa, which is not well-
known due to the prevalence of horizontal gene transfer. One
possible filter on microbial composition may be induced by peri-
odic soil hypoxia (DeAngelis et al., 2010), since this would select for
taxa that can tolerate hypoxia. As noted above, the clay soil, due to
its greater water holding capacity, higher bulk density, lower
porosity (Baillie et al., 2006), and higher moisture content (Russo
et al., 2010), is more likely than the sandy loam to contain anoxic
microsites. In contrast, on sandy loam, OTUs and individuals were
more distantly related than in randomly assembled communities,
and although there was a statistically significant negative correla-
tion between co-occurrence and phylogenetic distance, the coeffi-
cient was very close to zero. This result suggests that niche-driven
competitive interactions, in which inferior functionally similar taxa
are extirpated from the community due to competitive exclusion,
are important in bacterial community assembly, assuming that
closely related bacterial taxa are more likely to share phenotypes
relevant for resource-competition than are distantly related taxa.
Consistent with our findings, a phylogenetic community analysis of
several bacterial communities also found strong evidence of
phylogenetic clustering (Horner-Devine and Bohannan, 2006).
However, they found phylogenetic structure to vary along
a productivity gradient in a direction contrasting with our results,
namely a pattern of decreasing relatedness associated with
increasing plant productivity. In our study, the more productive
clay soil exhibited increased relatedness of bacterial taxa, which
could be a function of the more likely production of anoxic
microsites. Along gradients of total soil organic carbon, their anal-
yses revealed decreased relatedness associated with increased total
organic carbon, in accordance with our findings.

5. Conclusions

Despite having lineages in common, we found that the structure
of bacterial communities varied significantly between two con-
trasting Bornean rain forest soils that share the same climate, but
differ strongly in vegetation and soil properties. This finding is
consistent other studies demonstrating that microbial communi-
ties of dissimilar environments can show taxonomic distinctive-
ness, yet also exhibit co-occurrence of diverse lineages (Chaffron
et al., 2010; Nemergut et al., 2010). Moreover, the variation
between Bornean soil bacterial communities was significantly
associated with differences between soil types in tree community
structure, indicating direct and indirect trophic links between
overstory trees and the soil microbiome. Our analyses also suggest
that the assembly processes determining community structure also
vary between these soils. In clay, habitat-filtering processes may
predominate, which is consistent with our observations that obli-
gate and facultative anaerobes were more abundant on this soil
than on the likely better-aerated sandy loam. On the other hand,
niche-competitive processes appear more important in assembly
on sandy loam.We hypothesize that, in addition to the direct effects
of soil properties, especially oxygen availability and pH, the varia-
tion in bacterial composition that we observed between soil types
also reflects differences in the biochemical composition of litter, in
terms of structural organic carbon andmineral nutrients, but which
factors are the best predictors of the composition and structure of
soil bacterial communities remains to be identified.
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