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Summary

� Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting

plant–soil feedbacks, but how these feedbacks are constrained by lithology is poorly under-

stood.
� We investigated the hypothesis that lithological drivers of soil fertility filter plant resource

economic strategies in ways that influence the relative fitness of trees with AMF or EMF sym-

bioses in a Bornean rain forest containing species with both mycorrhizal strategies.
� Using forest inventory data on 1245 tree species, we found that although AMF-hosting

trees had greater relative dominance on all soil types, with declining lithological soil fertility

EMF-hosting trees became more dominant. Data on 13 leaf traits and wood density for a total

of 150 species showed that variation was almost always associated with soil type, whereas for

six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes),

variation was also associated with mycorrhizal strategy. EMF-hosting species had slower leaf

economics than AMF-hosts, demonstrating the central role of mycorrhizal symbiosis in plant

resource economies.
� At the global scale, climate has been shown to shape forest mycorrhizal composition, but

here we show that in communities it depends on soil lithology, suggesting scale-dependent

abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal

strategies.

Introduction

About 92% of land plants form some kind of mycorrhizal associ-
ation (Brundrett, 2009; Brundrett & Tedersoo, 2018), and these
associations differ in ecologically important ways (Smith & Read,
2008) that can have dramatic effects on the structure and func-
tioning of plant communities (Rillig, 2004; Bever et al., 2010;
Corrales et al., 2016; Bennett et al., 2017; Wurzburger et al.,
2017). Many of these effects are mediated by plant–soil feed-
backs, the processes whereby plants and their associated sym-
bionts alter the properties of the soil where they are growing,
causing feedbacks that affect plant growth and survival in the
future (Bever et al., 1997). The two most common types of myc-
orrhizal fungi, ectomycorrhizal fungi (EMF) and arbuscular myc-
orrhizal fungi (AMF), differ in several traits that cause
mycorrhizal mediated plant–soil feedbacks to vary between plant
species hosting different mycorrhizal types, particularly among
trees (Bennett et al., 2017; Teste et al., 2017; Segnitz et al.,

2020). Ectomycorrhizal fungi are considered more effective com-
petitors for organic forms of nutrients because they have more
recently diverged from free-living saprotrophic fungi and so have
retained key enzymatic capabilities associated with the degrada-
tion of lignocellulose, such as the production of peroxidases and
other oxidative enzymes (Rineau et al., 2012; Lindahl & Tunlid,
2015). By contrast, AMF lack or have only limited enzymatic
capacities to degrade organic compounds (Hodge, 2001; Read &
Perez-Moreno, 2003), and depend primarily on saprotrophic
microbiota to mineralize nutrients or liberate simple organic and
inorganic compounds before uptake (Smith & Smith, 2011).
However, the carbon costs of ectomycorrhizal symbiosis to plants
may be higher than those of arbuscular mycorrhizal symbiosis
(Leake et al., 2004; Hobbie, 2006; Brzostek et al., 2014; Lu &
Hedin, 2019), in part because EMF produce greater amounts of
biomass, as thick mantles covering the root tip and prolific extra-
matrical hyphae and rhizomorphs that allow more extensive soil
resource exploitation and long-distance transport to the host
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plant (Smith & Read, 2008; Phillips et al., 2013). Because of the
varying costs and benefits to trees of hosting EMF vs AMF, myc-
orrhizal mediated plant–soil feedbacks shape forest structure and
dynamics (Corrales et al., 2016; Bennett et al., 2017; Corrales
et al., 2018; Steidinger et al., 2019).

At least three inter-related hypotheses make predictions about
the consequences of mycorrhizal mediated plant–soil feedbacks
in forests sharing similar climate. The Gadgil hypothesis states
that EMF outcompete saprotrophs for nutrients bound in
organic matter. Whereas saprotrophs depend on the decomposi-
tion of organic matter for carbon (C) uptake, EMF obtain C
directly from the host plant and are thus less C-limited than
saprotrophs. Consequently, the greater uptake of nutrients, and
particularly nitrogen (N), by EMF limits the growth of sapro-
trophs, leading to suppressed leaf litter decomposition (Gadgil &
Gadgil, 1971; Fernandez & Kennedy, 2016). The short-circuit
hypothesis states that the superior ability of EMF to access nutri-
ents bound in organic matter enables them to competitively pre-
empt AMF for nutrients, making it more adaptive for EMF-
hosting trees to produce leaf litter made recalcitrant to

(a)

(b)

Fig. 1 Conceptual framework integrating two drivers of mycorrhizal
mediated plant–soil feedbacks: the resource economic spectrum of trait
variation and lithological determinants of soil fertility, which affect the
relative fitness advantage of trees hosting ectomycorrhizal fungi (EMF) vs
arbuscular mycorrhizal fungi (AMF) in a single climatic regime. As a model,
our framework is not comprehensive, but it emphasizes the interactions and
processes that are the focus of our study. (a) A conceptual model showing
the processes and mechanisms influencing the relative fitness advantage of
trees hosting AMF vs EMF. Soil fertility is jointly determined by the direct
effects of lithology and by its coupling with plant resource economies as
modified by mycorrhizal mediated plant–soil feedbacks. Plant traits may also
be influenced by aboveground environmental factors other than soil fertility.
For example, while leaf functional trait variation of plant species often
correlates with soil fertility gradients (Ordo~nez et al., 2010; Katabuchi et al.,
2012; Russo & Kitajima, 2016), not all species on nutrient-depleted soil, for
instance, have trait values at the slow end of the spectrum. This is because
leaf trait values also vary with respect to shade tolerance (Walters & Reich,
1996; Poorter, 2009), and light-demanding species with trait values at the
fast end of the spectrum are also found on nutrient-depleted soils (Davies
et al., 1998). (b) Variation in the relative fitness advantage of trees hosting
AMF vs EMF, with respect to plant species’ functional traits defined by the
resource economics spectrum and a lithological soil gradient of fertility.
While plant trait variation and lithology do not directly determine the
relative fitness advantage (see panel (a)), due to their indirect effects, the
relative fitness advantage, and hence relative dominance of trees hosting
AMF vs EMF, should vary with trait variation and lithological soil gradients.
In addition to the effects of the environment, traits may also vary given the
plant species pool, and lithology varies among natural systems, so the axes
conceptually represent a range of possible relative states that natural
systems may possess. Regions of the same color represent combinations of
trait values and lithological soil fertility that yield an equal relative fitness
advantage to an EMF- or AMF-hosting tree; darker orange colors indicate
an increasing relative fitness advantage for AMF-hosting species, whereas
darker blue colors indicate an increase in the relative fitness advantage for
EMF host species. Functional trait variation is represented with respect to
the resource-economy spectrum, from slow (e.g. thicker, tougher, longer
lived leaves with high carbon : nutrient ratios) to fast (e.g., thinner, weaker,
shorter-lived leaves with low carbon : nutrient ratios) positions along the
spectrum (Reich, 2014). Lithological soil gradient refers to variation in soil
fertility arising due to the lithology of the parent materials of the soils, from
soils with lithologically low (nutrient-poor) to high (nutrient-rich) nutrient
supply. This conceptual model does not quantify the global relative fitness
advantage corresponding to a given mycorrhizal association, lithological soil
fertility, or leaf functional traits: it is agnostic to the ecological set-point of
the system, and only conveys relative differences in a conceptual way. The
actual relative fitness advantage of hosting EMF or AMF in a particular
system depends strongly on the properties and dominant ecological
processes in that system. Here, we have emphasized nutrient fertility, but
lithological soil fertility also encompasses other factors affecting plant
productivity, such as soil moisture, which could alter the shapes of these
relationships, and this conceptual model could be modified to account for
such effects. In the model shown, regions of equal relative fitness advantage
are linear and have a slope of one, implying that functional trait variation
and soil nutrient supply operate as independent, additive factors of equal
importance to determining the relative fitness advantage of a given
mycorrhizal association. However, trait variation and lithology might differ
in the strength of their effects. For example, if lithology were less influential
than trait variation in determining the relative fitness advantage of a given
mycorrhizal strategy, then the slope would be more shallow, whereas if trait
variation were less influential, then the slope would be steeper. In addition,
trait variation and lithology may have interactive effects and not be strictly
additive, in which case the regions of equal relative fitness advantage would
be curved rather than linear. A curvilinear relationship may also arise if the
gradient of lithological soil fertility included variation in nutrient availability,
as well as other factors, such as water availability, affecting plant
productivity. PSF, plant–soil feedbacks; RFA, relative fitness advantage.
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decomposition by, for example, high concentrations of secondary
compounds or C polymers (e.g. lignin) (Northup et al., 1995;
Torti et al., 2001). The mycorrhizal associated nutrient economy
(MANE; Phillips et al., 2013) hypothesizes that, due to these
effects, trait-mediated biogeochemical syndromes exist in com-
munities dominated by tree species associating with AMF vs
EMF, which promote more open, inorganic vs more closed,
organic nitrogen economies, respectively (Lin et al., 2018). These
hypotheses make predictions about the differences in C and
nutrient cycling between communities that are dominated by
trees associated with AMF vs EMF, but they are less explicit
about how variation in the relative dominance of these mycor-
rhizal types is established in the first place. They focus on the
traits of the trees and fungi as principal determinants of soil fertil-
ity, but underlying lithological drivers of soil fertility also have
strong direct effects on plants and the soil microbiota, known as
edaphic effects. In soils where rock-derived nutrients, such as
phosphorus (P), are more limiting than N, as is often the case in
tropical systems (Walker & Syers, 1976; Vitousek, 2004),
accounting for lithology is essential for a more complete under-
standing of mycorrhizal mediated plant–soil feedbacks (Augusto
et al., 2017). Here, we develop and empirically evaluate an inte-
grated framework for how trait-based and lithological drivers of
soil fertility can jointly shape mycorrhizal mediated plant–soil
feedbacks and thereby govern the relative fitness advantage of
AMF- vs EMF-hosting tree species in forests growing on different
soil types (Fig. 1).

Plant–soil feedbacks during pedogenesis affect many properties
of soils that together define fertility, defined as the capacity of a
soil to promote plant growth, including any resource, such as
water and nutrients, and condition, such as acidity, affecting
plant function (Jenny, 1980; Augusto et al., 2017). However,
plant–soil feedbacks and other biotic processes operating in and
on soils do so within envelopes that are fundamentally limited by
the lithology of the parent materials, which ultimately constrain
processes determining soil fertility (Jenny, 1980; Augusto et al.,
2017). This is particularly true for rock-derived nutrients and
minerals that are limited in highly weathered soils (Chadwick
et al., 1999; Yang & Post, 2011; Vitousek & Chadwick, 2013).
Even in areas sharing the same regional species pool and climate,
the community structure, population dynamics, functional trait
variation, and ecosystem processes in forests have been shown to
vary greatly among soil types originating from different parent
materials of similar age but contrasting lithology (Baillie et al.,
1987; Ashton & Hall, 1992; Baltzer et al., 2005; Russo et al.,
2005; Dent et al., 2006; Coomes et al., 2009; Fine & Kembel,
2011; Katabuchi et al., 2012).

A common thread among the above hypotheses is that, due to
mycorrhizal mediated plant–soil feedbacks, it is adaptive for trees
hosting EMF to make tougher, longer-lived, and better-defended
organs that are lower in nutrient concentrations (Cornelissen
et al., 2001; Averill et al., 2019) and that thus produce less
decomposable leaf litter, compared to AMF-hosting trees, a pat-
tern observed in several studies (Read, 1991; Phillips et al., 2013;
Averill et al., 2019; Keller & Phillips, 2019; See et al., 2019).
However, plant functional trait variation not only shapes, but also

responds to, the environment. Plant communities on soils that
are nutrient-depleted due to the properties of the parent material
(which we will refer to as lithologically less fertile soils) typically
occupy the slower end of the resource economics spectrum
(Reich, 2014) and have more conservative resource-use strategies
(Chapin et al., 1993; Wright & Westoby, 1999; Aerts & Chapin,
2000; Liu et al., 2012; Russo & Kitajima, 2016). Plant species
making tough, thick, dense, long-lived, and well-defended leaves
with low nutrient concentrations and high resorption efficiency
generally produce leaf litter recalcitrant to decomposition
(Horner et al., 1988; Grime et al., 1996; Cornelissen et al., 2004;
Kurokawa & Nakashizuka, 2008), which can slow nutrient cycles
(Hobbie, 1992, 2015) and contribute to the accumulation of
organic matter (Aerts & Chapin, 2000; Baillie et al., 2006). For
example, functional trait combinations enabling a resource con-
servative strategy for trees growing on lithologically less fertile
soils would also presumably favor nutrient access by EMF, com-
pared to AMF, as nutrients would remain in complex organic
forms for longer periods of time, giving EMF, and their host
trees, preferential access to them (Northup et al., 1995, 1998).
An additional benefit for EMF-hosting trees could be greater abil-
ity to weather soil minerals, such as apatite, which may release
cations (Landeweert et al., 2001; Blum et al., 2002; Quirk et al.,
2014), although evidence has not always been found for differ-
ences between AMF- and EMF-hosting trees in mineral weather-
ing capacity (Koele et al., 2014). Given the higher C costs of
EMF symbiosis, then on lithologically more fertile soils, trees
associating with AMF should be more favored, as leaf litter is
more decomposable, and soil-derived mineral resources are more
available. Therefore, lithological effects on soil fertility may filter
plant resource economic strategies in a way that influences the
potential for MANE or mycorrhizal short-circuits to develop,
and thus the relative fitness of trees with EMF or AMF sym-
bioses. This conceptual framework for the relative fitness of myc-
orrhizal symbioses (Fig. 1) allows for codominance of AMF- and
EMF-hosting species on a given soil type, assuming that the bio-
geographic species pool available for colonization includes both
AMF- and EMF-hosting species.

Here, we evaluate this conceptual framework by quantifying
patterns of variation in mycorrhizal composition and functional
trait variation in tropical forest tree assemblages along a fertility
gradient of lithologically distinct soil types in Borneo. Much of
the original literature on mycorrhizal mediated plant–soil feed-
backs is focused on temperate forests (Gadgil & Gadgil, 1971;
Read, 1991; Northup et al., 1995; Phillips et al., 2013; Rosling
et al., 2016; Cheeke et al., 2017). However, there are reasons to
think that mycorrhizal mediated plant–soil feedbacks may oper-
ate differently in tropical systems (Waring et al., 2016; Corrales
et al., 2018; Lin et al., 2018; Liu et al., 2018; Keller & Phillips,
2019). Tropical and temperate forests have different regional
species pools of trees and fungi, due to their distinctive evolution-
ary histories and biogeography, as well as climatically driven dif-
ferences in the duration and speed of pedogenesis. Our study site,
a long-term forest dynamics plot in Lambir Hills National Park
(Lee et al., 2002b), is an ideal setting in which to examine how
trait-based and lithological drivers of soil fertility can jointly
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shape mycorrhizal mediated plant–soil feedbacks at the forest
community scale. The plot contains a diversity of AMF- and
EMF-hosting tree species, which provides sufficient power to test
for mycorrhizal differences in forest composition and trait varia-
tion. This is important because many tropical forests are strongly
dominated by AMF-hosting tree species, except in unusual cases
of monodominance by tree species associated with EMF (Peay,
2016). In addition, the plot encompasses four lithologically dis-
tinct soil types experiencing the same climate. The soil types are
derived from parent materials differing in texture and mineral
composition, comprising a gradient varying in concentrations of
total organic C, N and P, cation exchange capacity, soil moisture
holding capacity, and other soil properties influencing fertility
(Baillie et al., 2006; Tan et al., 2009; Russo et al., 2010) (Sup-
porting Information Methods S1, Table S1, Fig. S1). The long
history of research on the fertility gradient shows that these soil
types shape forest diversity and function at Lambir. The forest
composition varies dramatically (Kochsiek et al., 2013) due to
strong soil-type associations of tree species (Davies et al., 2005).
Tree functional traits (Katabuchi et al., 2012; Kochsiek et al.,
2013; Russo & Kitajima, 2016), leaf litter decomposition (Baillie
et al., 2006), and soil bacterial and ectomycorrhizal fungal com-
munities (Peay et al., 2009; Russo et al., 2012) also differ across
the soil types. Moreover, all of the soil types at Lambir are nutri-
ent-depleted, but they differ most strongly in rock-derived nutri-
ents, particularly P (Table S1), in contrast to many temperate
forest and tropical forests on younger soils (Walker & Syers,
1976; Vitousek, 2004), indicating the importance of accounting
for lithology.

To evaluate predictions from our conceptual framework, we
used data on the distributions of 1245 tree species and on varia-
tion in 14 functional traits (13 leaf traits and wood density) of
between 94 and 150 tree species (depending on the trait; Table 1)
across mycorrhizal associations and lithologically defined soil
types in Lambir. First, we expected that, all else being equal, the
relative fitness advantage, and hence the relative dominance of
EMF-hosting species, should increase with declining lithological
soil fertility (transition from orange to blue along the x-axis of

Fig. 1b). Second, the relative fitness advantage of a species with a
given mycorrhizal type on a given soil type should also depend
on where the species lies on the resource economics spectrum in
terms of functional trait variation. Trait values at the faster end
of the spectrum should be advantageous for AMF-hosting species
and become more advantageous to EMF-hosting species towards
the slower end(transition from orange to blue along the y-axis of
Fig. 1b). We therefore evaluated the following: whether EMF-
hosting species had trait values at the slower end of the resource
economics spectrum (i.e. towards more conservative values asso-
ciated with slower decomposition rates); whether the trait values
of EMF and AMF host species shift across the soil types in accor-
dance with the resource economics spectrum (i.e. towards more
conservative values on lithologically less fertile soil); and whether
interactions between mycorrhizal type and soil type affected trait
variation, in other words, whether the effect of soil type on trait
values differed between EMF- and AMF-hosting tree species.

Methods and Materials

Study site and species

Lambir Hills National Park, Sarawak, Malaysia (4°110N,
114°010E) encompasses 6800 ha of lowland mixed dipterocarp
forest, and has very high tree species diversity (Ashton, 2005). It
receives c. 3000 mm of rainfall annually, with all months averag-
ing > 100 mm, and monthly mean temperatures range from 26
to 28°C (Watson, 1985). Within the Park, a 52-ha long-term
research plot (hereafter, Lambir) was established, encompassing
an elevation range of 139 m (Lee et al., 2002a). In the plot, all
trees ≥ 1 cm in diameter at breast height (DBH) have been identi-
fied to species, mapped, and are censused every 5 yr using stan-
dardized methods of the Smithsonian ForestGEO plot network
(Condit, 1998). See Methods S1 for more details about plot
establishment. As of the 2008 census, the plot hosts approx. 1245
tree species from 95 families, with 808 species in 59 families that
are known to contain at least some species with AMF associations
and 111 species in three families that are known to contain at

Table 1 Plant functional traits included in this study.

Trait (no. of species analyzed) Abbreviation (unit) Total no. of trees (N within species)

Means (range)

Saplings Adults

Wood density (94) - (g cm�3) 337 (1–20) 0.55 (0.36–0.72) 0.60 (0.20–1.01)
Leaf area (151) LA (cm2) 705 (1–28) 149.51 (7.79–2025.39) 90.73 (8.42–1064.22)
Leaf thickness (148) - (mm) 512 (1–22) 0.19 (0.11–0.37) 0.24 (0.11–0.55)
Specific leaf area (150) SLA (cm2 g�1) 698 (1–28) 154.2 (60.4–502.9) 110.2 (38.9–305.8)
Leaf dry matter content (140) LDMC (g g�1) 670 (1–28) 0.39 (0.19–0.58) 0.43 (0.16–0.59)
Leaf tissue density (145) LTD (g cm�3) 488 (1–21) 0.38 (0.16–0.61) 0.43 (0.13–0.68)
Leaf C concentration (137) C (%) 622 (1–25) 48.9 (30.55–58.62) 47.29 (31.19–56.23)
Leaf N concentration (137) N (%) 623 (1–21) 1.52 (0.58–4.12) 1.67 (0.78–3.22)
Leaf P concentration (135) P (%) 621 (1–19) 0.06 (0.02–0.25) 0.06 (0.02–0.15)
Leaf C : N (137) C : N 622 (1–25) 34.96 (11.42–88.69) 30.25 (14.99–64.84)
Leaf C : P (135) C : P 619 (1–25) 914 (186–2707) 914 (321–2754)
Leaf N : P (135) N : P 620 (1–25) 26.38 (40.43–85.00) 30.01 (10.25–71.87)
Leaf d13C (135) - (per mil) 620 (1–25) �34.76 (�38.35–�27.73) �32.90 (�37.48–�27.33)
Leaf d15N (135) - (per mil) 613 (1–25) �0.60 (�7.84–4.58) �0.97 (�5.03–5.40)
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least some species with EMF associations (Wang & Qiu, 2006;
Brundrett, 2009; Tedersoo & Brundrett, 2017).

The soils and geomorphology of Lambir are described in detail
elsewhere (Lee et al., 2002b; Tan et al., 2009). To summarize from
previous studies (Davies et al., 2005; Baillie et al., 2006), the soils
are derived from interbedded sandstone and shale, which are the
lithologically distinct parent materials giving rise to the ends of the
fertility gradient represented in Lambir. The sandstone-derived
soils are well-drained humult ultisols, with a surface horizon of
loosely-matted and densely-rooted raw humus, and have low nutri-
ent status. The shale-derived soils are relatively more fertile, clay-
rich udult ultisols with greater water holding capacity and a shal-
low leaf-litter layer. These two soils represent the extremes in the
range of soil types in Lambir. Four soil types (sandy loam, loam,
fine loam, clay, ranked in ascending order of nutrient concentra-
tions and moisture) have been defined at Lambir based on multi-
variate analyses of variation in total soil C and soil nutrient
concentrations (N, P, and exchangeable potassium (K), calcium
(Ca) and magnesium (Mg)) and elevation (Davies et al., 2005;
Baillie et al., 2006) (Fig. S1; Table S1). These soil types comprise a
gradient in lithological fertility, as they are derived from different
relative amounts of the two lithologically distinct parent materials.
Each 209 20m quadrat within the Lambir plot was categorized
as one of these soil types, which share the same climate due to their
close proximity (Davies et al., 2005).

Soil and mycorrhizal-specific tree distributions

Tree species in the plot were assigned to a mycorrhizal type based
on the genus and family-level data in Brundrett (2009) and
Wang & Qiu (2006). While many families of trees are known to
predominantly or exclusively host AMF (e.g. Myristicaceae) or
EMF (e.g. Dipterocarpaceae; Fagaceae) (Brearley, 2012), there
can be variation within families (e.g. Rosaceae) (Tedersoo &
Brundrett, 2017), and mycorrhizal status has not been investi-
gated for every tree species in Lambir. We therefore were conser-
vative in assigning mycorrhizal types to tree species, and coded
species as unknown when the genus or family had multiple
records of both mycorrhizal associations.

As in previous studies at Lambir (Methods S1), each individual
tree was assigned to one of the four soil types based on the loca-
tion where it was growing in the plot and the soil type map
(Fig. S1). The basal area of each tree was calculated in m2 using
diameters of trees alive in the 2008 census of Lambir. Using each
tree’s location, the basal area of trees was summed within
209 20 m quadrats in the plot for all trees and for mycorrhizal
associations separately. The same calculations were done using
stem abundances in two size classes, 1–20 and ≥ 20 cm in DBH.
Basal area was expressed per unit area (m2 ha�1) and both basal
area and stem abundance were expressed as proportions of the
total that were trees of either AMF or EMF-hosting species.

Functional trait variation

Between May and August 2009, we quantified variation in wood
density and 13 leaf functional traits for up to 150 tree species

(depending on the trait; Table 1), 25 of which occur on both the
more fertile clay, and less fertile sandy loam soils for saplings (1–
5 cm DBH, 452 individuals in total) and adult trees (≥ 5 cm
DBH, 245 individuals in total) separately, resulting in the follow-
ing sampling distributions for adult trees (56 AMF-hosting and
14 EMF-hosting species on fertile soil, 55 AMF-hosting and 23
EMF-hosting species on infertile soil) and for saplings (15 AMF-
hosting and 5 EMF-hosting species on more fertile soil, 14
AMF-hosting and 6 EMF-hosting species on less fertile soil). The
number of trees sampled differed between traits (Table 1) and
across species9 size class (sapling vs adult), ranging from 1 to 25
saplings, and 1 to 8 adult trees per species (mean = 12.9 saplings,
1.8 adults per species; overall mean = 4.7 trees per species). Leaf
functional traits reflected leaf chemical and structural properties
that are associated with species’ resource economics (Wright
et al., 2004; Reich, 2014) and leaf litter decomposition rates
(Cornwell et al., 2008; Kurokawa & Nakashizuka, 2008;
Freschet et al., 2012). Three to five mature, sunlit, minimally
damaged leaves were harvested per tree, and their functional trait
values were determined following standardized protocols (P�erez-
Harguindeguy et al., 2013) explained in greater detail in Meth-
ods S1. All EMF-hosting species in our functional trait data are
in the Dipterocarpaceae. Each tree was assigned a crown exposure
index varying from 1–5 (1 = no direct light, 5 = crown com-
pletely exposed; Clark & Clark, 1992) to account for variation in
insolation.

Statistical analyses

All analyses were conducted using R statistical software (R Core
Development Team, 2017). To test the hypothesis that the rela-
tive dominance of AMF- vs EMF-hosting tree species varies
among soil types, we fit linear models of four response variables
as a function of soil type separately for each mycorrhizal type: the
tree basal area in each quadrat expressed per unit area that hosted
either AMF or EMF, the proportion of total tree basal area in
each quadrat that hosted either AMF or EMF, the proportion of
total number of stems 1–20 cm in DBH in each quadrat that
hosted either AMF or EMF, and the proportion of total number
of stems ≥ 20 cm in DBH in each quadrat that hosted either
AMF or EMF. We used post-hoc pairwise comparisons after a sig-
nificant omnibus test to quantify which soil types differed signifi-
cantly from each other.

We used linear mixed effects models as implemented in the
‘lmer’ function (Bates et al., 2015) to test differences in leaf traits
between trees with different mycorrhizal associations (AMF and
EMF) and growing on soil types of lithologically different fertil-
ity. For trait analyses, the four soil types were grouped as more
fertile (fine loam and clay) and less fertile (sandy loam and loam)
soils. Models were fit for each trait separately, but included trees
of all diameters. Mycorrhizal association, soil fertility, and their
interaction were included as fixed factors. To account for trait
variation with insolation, crown exposure was included as a fixed
covariate. Tree species identity was included as a random inter-
cept to account for the fact that different numbers of individuals
were sampled for each species and because we were interested in
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community-level, not species-specific, patterns. We accounted
for the unequal variance in several leaf traits and wood density
between AMF- and EMF-hosting species. We controlled the false
discovery rate resulting from multiple testing using the Ben-
jamini–Hochberg method (Benjamini & Hochberg, 1995).

Leaf trait differences between trees of different mycorrhizal
association and on different soil types in relation to the resource
economics spectrum were visualized using principal component
analysis (PCA). Wood density was not included in these analyses
because this was measured for fewer species than the leaf traits
were (Table 1), and d15N was not included because it does not
cleanly relate to the resource economy spectrum. Species were
grouped into four treatment categories combining their mycor-
rhizal association and soil type (AMF–clay, AMF–sandy loam,
EMF–clay, EMF–sandy loam). As some species occurred on both
soil types, we omitted individual trees from the soil type on
which they were sampled least in order to avoid double represen-
tation of one species in our PCA; species for which not all leaf
data were available were omitted as well, so that our PCA
included 140 tree species9 soil type records (adult trees: 47
AMF-hosting and 11 EMF-hosting species on more fertile clay
soil, 35 AMF-hosting and 13 EMF-hosting species on less fertile
sandy loam soil; saplings: 12 AMF-hosting and 3 EMF-hosting
species on fertile soil, 13 AMF-hosting and 6 EMF-hosting
species on infertile soil). The PCA was performed using species’
trait means calculated separately for juvenile and adult trees, all
of which were ordinated together on common axes. However, we
visualize them separately to identify whether patterns in trait vari-
ation differed between trees in different size classes. We used per-
mutational multivariate analysis of variance (PERMANOVA;
Anderson, 2001; Zapala & Schork, 2006), as implemented in the
VEGAN package (‘adonis’ function to compare centroids, ‘betadis-
per’ function to compare variances between treatment groups;
Oksanen et al., 2019) to identify differences among groups in
multivariate trait variation. PERMANOVA was performed for adults
and saplings separately since trait variation can change with
ontogeny.

Data availability

The Lambir plot stem and trait data are available at http://ctfs.
si.edu/datarequest/.

Results

On all four soil types, AMF-hosting trees were equal or greater
in basal area and stem abundance than EMF-hosting tree
species (Fig. 2). The basal area per hectare of both mycorrhizal
types increased significantly with declining lithological soil fer-
tility (from clay to sandy loam), but the increase was substan-
tially larger for EMF- than AMF-hosting trees (Fig. 2a).
Expressed as a proportion of the total basal area, the mycor-
rhizal types comprised similar proportions on the lithologically
less fertile sandy loam, but EMF-hosting trees declined signifi-
cantly to nearly half of the proportion of basal area repre-
sented by AMF-hosting trees on clay (Fig. 2b). In terms of the

proportion of the total stem abundance, AMF-hosting trees
dominated the assemblages on all four soil types (Fig. 2c,d).
For larger stems, the patterns were more similar to those in
basal area, in that with increasing lithological soil fertility,
from sandy loam to clay, the proportion of AMF-hosting trees
significantly increased, whereas that of EMF-hosting trees sig-
nificantly decreased (Fig. 2c). Patterns for smaller stems were
more idiosyncratic (Fig. 2d). Lower proportions of AMF-host-
ing trees were found on the lithologically less fertile soil types
(sandy loam and loam), compared with the more fertile soil
types (fine loam and clay), with the greatest proportion found
on fine loam (Fig. 2d). By contrast, EMF-hosting trees repre-
sented overall far lower proportions that were lowest on the
fine loam, and greater on the less fertile sandy loam and loam,
which were not different from the more fertile clay (Fig. 2d).

The functional traits we analyzed were correlated with each
other to varying degrees, as expected (Fig. S2). Six out of thirteen
leaf traits differed significantly between AMF- and EMF-hosting
trees after accounting for multiple comparisons (Tables 2, S2,
Figs 3, S3). Leaves of EMF-hosting species had denser tissue,
higher dry matter content, lower specific leaf area (SLA), higher
%C, lower N : P, and higher d15N than leaves of AMF-hosting
species, and trait values of both AMF- and EMF-hosting tree
species became more conservative on the lithologically less fertile
sandy loam, relative to clay. Wood density and all leaf traits,
except %C, differed significantly between trees growing on less vs
more fertile soils after accounting for multiple comparisons
(Tables 2, S2, Figs 3, S3). Trees on the more fertile clay soil had
lower wood density, larger and thinner leaves of higher SLA,
lower leaf dry matter content (LDMC) and tissue density, and
lower d13C and d15N than trees on less fertile sandy loam soils.
Also, their leaves were higher in %N and %P, and lower in C : N,
C : P and N : P ratios than the leaves on trees on sandy loam soils.
For wood density and leaf C : P ratio, there was a significant
interaction between mycorrhizal association and soil type, but
these interactions did not remain statistically significant after
accounting for multiple comparisons (Tables 2, S2; Figs 3, S3).
For wood density, the difference between clay and sandy loam
tended to be larger for EMF- than for AMF-hosting species
(Fig. S3a), whereas for leaf C : P, the difference tended to be
larger for AMF- than EMF-hosting species (Fig. 3i). Crown
exposure affected all traits except %P, C : P, and wood density
(Tables 2, S2), demonstrating that light availability affects trait
variation.

The first two axes of the PCA explained 42% (PC1) and 13%
(PC2) of the total variation in leaf traits of all species, but neither
PC1 nor PC2 aligned cleanly with the resource economics spec-
trum of trait variation (Fig. 4). The first axis correlated positively
with leaf %P, SLA, and leaf %N and negatively with leaf dry
matter content, leaf C : P and C : N (Table S3). The second axis
correlated most strongly with leaf %N (negatively) and with leaf
C : N (positively). Multivariate variation in leaf traits segregated
among the four mycorrhizal9 soil type groups for adults and
saplings (Fig. 4), but was structured more by soil type than myc-
orrhizal association in that it varied significantly with soil type,
but not mycorrhizal type (Table 3).
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Discussion

The lithology of soils constrains their inherent fertility, which
influences the composition and function of the plant communi-
ties that grow on them (Jenny, 1980; Augusto et al., 2017).
Likewise, mycorrhizal mediated plant–soil feedbacks affect soil
fertility within these constraint envelopes and further shape
plant communities (Gadgil & Gadgil, 1971; Northup et al.,
1995; Phillips et al., 2013; Averill et al., 2019). Here, we inte-
grated these frameworks (Fig. 1) and found that tree species
composition and functional trait variation was related to both
soil lithology and mycorrhizal association in this Bornean rain
forest, supporting the hypothesis that soil fertility inherited
from the parent material shapes plant resource economies and
the relative fitness advantage of trees with different mycorrhizal
associations. Although AMF-hosting tree species almost always
comprised more of the total basal area and abundance than
EMF-hosting species in this tropical rain forest, the relative
dominance of these mycorrhizal types changed across soil types
along a lithological fertility gradient. The relative dominance of
AMF- over EMF-hosting trees decreased with declining litho-
logical fertility, especially for basal area and the abundance of
larger stems. Variation in the relative abundance of smaller
stems was broadly consistent with these patterns, but more vari-
able, which is to be expected if it takes time for differences in
the relative fitness advantage of these long-lived AMF- vs EMF-
hosting trees (i.e. via growth and survival rate differences) to

play out. Thus, in this Bornean rain forest, forest community
structure varied not only among soil types on a lithological fer-
tility gradient, as has been previously shown (Davies et al.,
2005), but also in relation to the mycorrhizal associations of
trees, suggesting strong edaphic effects on the relative fitness
advantage of EMF- vs AMF-hosting trees.

At least some of the soil type-related variation in the relative
dominance of tree species with different mycorrhizal associations
can be traced to coordinated variation in tree functional traits in
this forest. Confirming previous studies (Katabuchi et al., 2012;
Russo et al., 2013; Russo & Kitajima, 2016), we not only found
significant variation in nearly all leaf and wood traits across soil
types that was consistent with the resource economics spectrum,
but also found variation in many, but not all, leaf traits, to differ
between AMF- and EMF-hosting tree species. All plant traits,
including those we analyzed, are not independent of each other,
as they are part of coordinated phenotypic variation (Pigliucci,
2003). EMF-hosting tree species generally had more conservative
leaf trait values than AMF-hosting species, particularly for SLA,
LDMC, tissue density, and %C. These leaf traits are correlated
with leaf litter traits, such as lignin concentration (Cornwell
et al., 2008), that are associated with reduced leaf litter decom-
posability (Kurokawa & Nakashizuka, 2008; Freschet et al.,
2012). Other traits, like foliar N and C : N, that are thought to
be associated with mycorrhizal mediated plant–soil feedbacks
(Read, 1991; Phillips et al., 2013), did not differ between mycor-
rhizal types in our study. This contradictory result may be a

(a) (c)

(b) (d)

Fig. 2 Variation in the relative dominance of
trees with different mycorrhizal associations
(AMF, arbuscular mycorrhizal fungi; EMF,
ectomycorrhizal fungi) on four soil types on a
lithological fertility gradient in a Bornean
mixed dipterocarp forest: (a) basal area (m2)
per hectare (ha), (b) and proportion of total
basal area, (c) stems 1–20 cm in diameter at
breast height (DBH), (d) stems (≥ 20 cm in
DBH). Soil types are ordered from less to
more fertile (left to right). Bars show means
across 209 20m quadrats in the Lambir plot,
with error bars showing 95% confidence
limits. Lower- and upper-case letters indicate
statistical significance of pairwise differences
between soil types for AMF and EMF-hosting
tree species, respectively. Within each soil
type, the basal area per hectare, the
proportion of total basal area, and the
proportions of smaller and larger stems
differed significantly between mycorrhizal
types, except for basal area per hectare on
sandy loam. Mean proportions do not sum to
one because there was insufficient
information for some tree species to classify
them according to mycorrhizal association.
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function of the fact that hypotheses about the drivers of mycor-
rhizal associated nutrient economies were originally developed
and tested in forests of the temperate zone, in which N is often
more limiting than in tropical forests (Walker & Syers, 1976;
Vitousek, 2004). Our trait analyses instead point to P as impor-
tant in the mycorrhizal mediated plant–soil feedbacks in this
forest, since foliar C : P and N : P were higher for AMF- than
EMF-hosting trees. To the extent that foliar chemistry correlates
with access to soil nutrients, our results suggest that EMF-hosting
trees have access to more P per unit C or N than do AMF-hosting
trees, especially on the less fertile sandy loam. Thus, which nutri-
ents are important for understanding mycorrhizal mediated
nutrient economies may vary across systems.

While we do not have data on leaf litter decomposition for
species of different mycorrhizal types across the gradient, our
results suggest that on soils of lower fertility, associating with
EMF, some of which may have more direct access to nutrients in
organic matter (Rineau et al., 2012; Talbot et al., 2013; B€odeker

Table 2 Effects of mycorrhizal type (ecto- or arbuscular mycorrhizal
symbiosis), lithological soil type (more or less fertile), and crown exposure
and their interactions on ten fresh leaf traits in a mixed dipterocarp forest
in Malaysian Borneo.

dfnum dfden F P

Specific leaf area (150)
Mycorrhizal type 1 148 16.54 < 0.001*
Soil type 1 542 27.64 < 0.001*
Crown exposure 1 542 219.65 < 0.001*
Mycorrhizal type9 soil type 1 542 0.95 0.329
Mycorrhizal type9 crown exposure 1 542 0.25 0.619
Soil type9 crown exposure 1 542 1.44 0.231
Mycorrhizal type9 soil

type9 crown exposure
1 542 2.84 0.093

Leaf dry matter content (140)
Mycorrhizal type 1 138 12.43 0.001*
Soil type 1 524 22.51 < 0.001*
Crown exposure 1 524 167.26 < 0.001*
Mycorrhizal type9 soil type 1 524 0.69 0.407
Mycorrhizal type9 crown exposure 1 524 0.15 0.702
Soil type9 crown exposure 1 524 1.06 0.305
Mycorrhizal type9 soil

type9 crown exposure
1 524 2.80 0.095

Leaf tissue density (145)
Mycorrhizal type 1 143 19.96 < 0.001*
Soil type 1 337 9.68 0.002*
Crown exposure 1 337 107.52 < 0.001*
Mycorrhizal type9 soil type 1 337 0.00 0.985
Mycorrhizal type9 crown exposure 1 337 0.90 0.343
Soil type9 crown exposure 1 337 13.45 < 0.001*
Mycorrhizal type9 soil

type9 crown exposure
1 337 0.31 0.581

Leaf %C (137)
Mycorrhizal type 1 135 8.52 0.004*
Soil type 1 479 4.28 0.039
Crown exposure 1 479 25.47 < 0.001*
Mycorrhizal type9 soil type 1 479 1.04 0.309
Mycorrhizal type9 crown exposure 1 479 3.08 0.080
Soil type9 crown exposure 1 479 1.34 0.248
Mycorrhizal type9 soil

type9 crown exposure
1 479 0.00 0.957

Leaf %N (137)
Mycorrhizal type 1 135 0.44 0.509
Soil type 1 480 6.79 0.009*
Crown exposure 1 480 11.86 0.001*
Mycorrhizal type9 soil type 1 480 0.95 0.330
Mycorrhizal type9 crown exposure 1 480 0.61 0.435
Soil type9 crown exposure 1 480 6.98 0.009*
Mycorrhizal type9 soil

type9 crown exposure
1 480 0.91 0.341

Leaf %P (135)
Mycorrhizal type 1 133 1.92 0.168
Soil type 1 480 60.24 < 0.001*
Crown exposure 1 480 0.03 0.863
Mycorrhizal type9 soil type 1 480 3.70 0.055
Mycorrhizal type9 crown exposure 1 480 0.26 0.610
Soil type9 crown exposure 1 480 1.63 0.203
Mycorrhizal type9 soil

type9 crown exposure
1 480 1.60 0.207

Leaf C : N (137)
Mycorrhizal type 1 135 0.45 0.505
Soil type 1 479 9.37 0.002*
Crown exposure 1 479 30.64 < 0.001*
Mycorrhizal type9 soil type 1 479 1.86 0.173

Table 2 (Continued)

dfnum dfden F P

Mycorrhizal type9 crown exposure 1 479 1.08 0.299
Soil type9 crown exposure 1 479 4.12 0.043
Mycorrhizal type9 soil

type9 crown exposure
1 479 0.22 0.643

Leaf C : P (135)
Mycorrhizal type 1 133 0.41 0.523
Soil type 1 478 66.04 < 0.001*
Crown exposure 1 478 0.54 0.462
Mycorrhizal type9 soil type 1 478 4.72 0.030
Mycorrhizal type9 crown exposure 1 478 0.60 0.437
Soil type9 crown exposure 1 478 2.20 0.139
Mycorrhizal type9 soil

type9 crown exposure
1 478 1.63 0.202

Leaf N : P (135)
Mycorrhizal type 1 133 7.32 0.008*
Soil type 1 479 40.56 < 0.001*
Crown exposure 1 479 4.40 0.037
Mycorrhizal type9 soil type 1 479 3.50 0.062
Mycorrhizal type9 crown exposure 1 479 0.27 0.602
Soil type9 crown exposure 1 479 0.24 0.625
Mycorrhizal type9 soil

type9 crown exposure
1 479 1.10 0.294

Leaf d15N (135)
Mycorrhizal type 1 133 24.01 < 0.001*
Soil type 1 478 111.07 < 0.001*
Crown exposure 1 478 10.34 0.001*
Mycorrhizal type9 soil type 1 478 0.01 0.922
Mycorrhizal type9 crown exposure 1 478 0.63 0.429
Soil type9 crown exposure 1 478 1.60 0.206
Mycorrhizal type9 soil

type9 crown exposure
1 478 0.08 0.784

Numbers in parentheses indicate the number of species measured per trait.
Summary statistics from linear mixed effects models are given: bold
probability (P) values indicate significant effects; dfnum, dfden indicate
numerator and denominator degrees of freedom; and F indicates the test
statistic for each factor. See Supporting Information Table S2 for test statis-
tics for other traits. For each factor, an asterisk indicates whether the prob-
ability remained statistically significant after accounting for the false
discovery rate.
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et al., 2014; Lindahl & Tunlid, 2015; Shah et al., 2016; but see
Pellitier & Zak, 2018), could provide a competitive advantage
(Brearley et al., 2003). Consistent with this, the fungal genus
Cortinarius, which is known for enzymatic oxidation of humus
(B€odeker et al., 2014), was found exclusively on the lower fertility

sandy loam at Lambir, whereas genera thought to be associated
primarily with mineral nutrient uptake, such as Russula, were
more common on clay soils (Peay et al., 2009; Hobbie & Agerer,
2010). Associating with AMF, which do not have as strong
decomposer capacities, but that evidence suggests are also less

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 3 Mean leaf traits (� 1 SEM) of
arbuscular mycorrhizal fungus (AMF; orange
bars) and ectomycorrhizal fungus (EMF; blue
bars) hosting trees growing on two
lithologically distinct soil types (more fertile
clay and less fertile sandy loam) in a Bornean
mixed dipterocarp forest. To attribute equal
weight to each species, traits were first
averaged per species and then averaged per
mycorrhizal type and soil type for display.
Letters above bars indicate significant
differences between groups for traits that
showed a significant interaction effect of soil
and mycorrhizal type (Table 2). Asterisks
indicate significance levels for mycorrhizal
type (Myc.) and soil type (Soil) effects on
traits tested with linear mixed models: ns, not
statistically significant; *, P < 0.05; **,
P < 0.01; ***, P < 0.001. The interaction of
mycorrhizal and soil type (Myc.9 Soil) was
only statistically significant for C : P. All
factors except Myc.9 Soil for C : P remained
statistically significant after controlling the
false discovery rate (Table 2). See Supporting
Information Table S2 and Fig. S2 for results
for the other three leaf traits and wood
density.
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costly to the plant in terms of carbon allocation (Leake et al.,
2004; Hobbie, 2006), may suffice to acquire the soil nutrients
needed by the host tree on more fertile soils, where more easily
accessible, inorganic forms of nutrients are thought to comprise a
greater proportion of the total nutrient pool. An additional
advantage of hosting EMF could be enhanced weathering of pri-
mary minerals (i.e. minerals directly from the parent material) to
release nutrients (Landeweert et al., 2001; Blum et al., 2002;
Quirk et al., 2014). However, this potential advantage is unlikely
to be realized at Lambir because the soils there are already suffi-
ciently old and weathered that virtually none of the primary min-
erals remains, and only nutrient-poor secondary minerals, like
kaolinite and iron oxides, are present (I. C. Baillie, pers. comm.).
Thus, our results indicate that complex interactive effects of
lithology, plant-resource economy, and mycorrhizal mediated
plant–soil feedbacks could lead to the variation in relative domi-
nance of EMF- vs AMF-hosting trees that we observed across
lithological soil types in the Lambir forest.

Foliar traits as indicators of the drivers of mycorrhizal
mediated plant–soil feedbacks

Most hypotheses addressing mycorrhizal mediated plant–soil
feedbacks make predictions about trait variation of the leaf litter
of AMF- vs EMF-hosting trees (see the Introduction section).
There are no species-specific data on leaf litter at Lambir to test
whether litter traits or decay rates vary by mycorrhizal type and
whether there are interactive effects of soil type, but aggregated
leaf litter from trees on clay decays significantly faster than litter
from sandy loam at Lambir (Baillie et al., 2006). Given that leaf
traits often correlate with leaf litter traits associated with decom-
posability (Kurokawa & Nakashizuka, 2008; Freschet et al.,
2012) and that nutrient resorption often correlates with plant
resource economies (Wright & Westoby, 2003; Kobe et al.,
2005), especially for evergreens (Zhang et al., 2018), then the

(a)

(b)

Fig. 4 Plots of the first two axes of a principal component analysis
illustrating variation in leaf traits between (a) adults and (b) saplings of tree
species hosting arbuscular mycorrhizal fungi (AMF) or ectomycorrhizal
fungi (EMF) and growing on two lithologically distinct soil types (more
fertile clay and less fertile sandy loam) in a Bornean mixed dipterocarp
forest. Triangles represent means of species growing on more fertile soils,
circles refer to means of species on less fertile soils; orange data points
indicate AMF-hosting tree species, and blue data points refer to EMF-
hosting species. Ellipses with solid lines represent the 95% confidence
interval around the overall mean of species on fertile soils; ellipses with
dashed lines mark confidence intervals of species on infertile soils. Trait
data for juveniles and adults were included in the same ordination to
facilitate identification of the resource economics spectrum, and so
percentages of variance explained by each principal component are the
same.

Table 3 Effects of mycorrhizal type (ecto- or arbuscular mycorrhizal
symbiosis), lithological soil type (more or less fertile), their interaction, and
crown exposure on species’ mean multivariate leaf traits for adult trees
and saplings

df SS MSS F P

Adults
Mycorrhizal association 1 0.033 0.033 1.434 0.223
Soil type 1 0.862 0.862 37.001 0.001
Crown exposure 1 0.021 0.021 0.899 0.384
Mycorrhizal association9 soil

type
1 0.021 0.021 0.915 0.383

Saplings
Mycorrhizal association 1 0.023 0.023 0.746 0.499
Soil type 1 0.303 0.303 9.801 0.001
Crown exposure 1 0.011 0.011 0.359 0.702
Mycorrhizal association9 soil

type
1 0.005 0.005 0.148 0.898

df, degrees of freedom; SS, sum of squares; MSS, mean sum of squares; F,
F statistic; P, probability from permutational multivariate analysis of vari-
ance. Bold probability values indicate statistically significant effects.

New Phytologist (2020) 228: 253–268 � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist262



same predictions concerning leaf litter should hold for leaf traits.
Although the expected differences have not always been found
(Koele et al., 2012), some studies have shown that EMF-hosting
tree species from both temperate and tropical lineages produced
leaves with lower N and P concentrations than AMF-hosting
species (Cornelissen et al., 2001; Averill et al., 2019). By contrast,
using a data set including more leaf traits (13), we did not find
%N and %P to differ between mycorrhizal types, but did find
traits related to leaf structural properties and C concentration
(SLA, LDMC, leaf tissue density (LTD), %C), nutrient ratios
(C : P, N : P), and foliar d15N to differ significantly. While not
all traits varied significantly between mycorrhizal types, all but
one did vary significantly between soil types in our study, indicat-
ing that in some systems foliar trait variation and plant resource
economies can be more strongly constrained by lithological soil
fertility than by mycorrhizal associations at the community scale.

To the extent that leaf traits respond to lithological drivers of
soil fertility and indicate plant resource economies, they may be
indicators of which are the important resources driving mycor-
rhizal mediated plant–soil feedbacks in a system. Mycorrhizal
infection may directly affect access to and use of water (Auge
et al., 1992; Lehto & Zwiazek, 2011). However, the lack of sig-
nificant variation among mycorrhizal types in foliar d13C, a mea-
sure of plant water use efficiency (Ehleringer et al., 1993),
suggests that variation in access to soil moisture mediated by
mycorrhizas is not a principle driver of the patterns that we
observed. Along wider or other types of lithological gradients,
other controls on fertility, along with nutrients, may affect the
relative fitness advantage of contrasting mycorrhizal types. For
example, the white sand heath forests of Borneo have lower forest
basal area and are on soil types that are even more nutrient-de-
pleted, acidic, and well-drained, compared to the sandy loam at
Lambir (Davies & Becker, 1996; Proctor, 1999; Jucker et al.,
2018). We speculate that the relative fitness advantage of mycor-
rhizal types may not always vary monotonically with lithological
fertility, as suggested in our study, but likely depends on the bal-
ance between multiple factors limiting tree growth in relation to
mycorrhizal function.

In the forests of Northwest Borneo, soil P is hypothesized to be
a key determinant of soil type-related floristic variation (Baillie
et al., 1987; Potts et al., 2002). At Lambir total P, most of which
is likely in organic forms given the low concentrations of
orthophosphate, is particularly low in sandy loam (Baillie et al.,
2006; Kochsiek et al., 2013). The foliar N : P > 30 for AMF-host-
ing trees on sandy loam suggests that AMF-hosting trees are
strongly P-limited there (G€usewell, 2004). Moreover, foliar N : P
was higher among AMF- vs EM-hosting trees on both soil types.
These findings may be explained by the fact that, unlike EMF,
AMF depend on free-living decomposers to release nutrients
bound in organic matter, and AMF-hosting trees have been shown
experimentally to benefit from a more inorganic P-economy
(DeForest & Snell, 2020). By the time organic matter is mineral-
ized, much of the P in it may have already been acquired by EMF
(Liu et al., 2018). If so, then one hypothesis is that enhanced
access by EMF-hosting trees to organic P in the more recalcitrant
leaf litter may increase their relative fitness advantage on this

lithologically infertile soil type, which could contribute to added
niche space (Peay, 2016). Our results suggest this might be the
case at Lambir. The total basal area increases with declining fertil-
ity across the four soil types, and 68% of the total per ha increase
in basal area on sandy loam compared to clay can be attributed to
EMF-hosting trees, whereas only 21% of that increase is due to
AMF-hosting trees. Viewed through the lens of plant competition
theory (Tilman, 1982), our findings suggest that the difference
between AMF and EMF in the ability to access a key nutrient lim-
iting the growth of their plant hosts effectively changes the nutri-
ent supply rate for tree species of different mycorrhizal strategies.
This would lead to different competitive outcomes, even in the
same environment, than if these tree species were associated with
the same mycorrhizal types. Evidence for this has been found in
forests where depletion of mineralizable N from soil organic mat-
ter by EMF (Corrales et al., 2016) and low soil N availability (Zhu
et al., 2018) were associated with dominance of EMF-hosting tree
species. While trait-based and environmental feedbacks promoting
a relative fitness advantage for EMF-hosting trees with conservative
nutrient syndromes have been hypothesized by global scale studies
(Averill et al., 2019; Steidinger et al., 2019), here we show edaphic
effects on such fitness advantages that contribute significantly to
local habitat specialization and distributional patterns of tree
species at the community scale.

Based on leaf nutrient concentrations and ratios, we found
stronger evidence for the importance of P than N in mycorrhizal
associated plant–soil feedbacks in our system. However, the dra-
matically higher foliar d15N of EMF- vs AMF-hosting species
suggests that N may also be involved, but perhaps in ways that
are not reflected in foliar C : N or %N. Uptake of N by plants
and translocation within the plant are considered to cause mini-
mal isotopic fractionation (Hogberg, 1997; Dawson et al., 2002).
To the extent that foliar d15N indicates the d15N of the N source
used by plants (Houlton et al., 2007) and ecosystem N-cycling
processes (Robinson, 2001), the additive effects between soil and
mycorrhizal type on foliar d15N that we found may be explained
by AMF- and EMF-hosting trees accessing pools of soil N with
different isotopic signatures, regardless of the soil type on which
they are growing. Interpretation of foliar d15N alone is, however,
complicated, partly because many microbial processes can frac-
tionate N (Hobbie & Hobbie, 2008), and we have no informa-
tion on the isotopic signatures of inorganic or organic soil N
across soil types at Lambir. In contrast to our results in this tropi-
cal forest, previous work, mostly in temperate and boreal systems,
has found that EMF-hosting plants have more depleted (lower)
foliar d15N than plants with AMF associations (Hogberg, 1997;
Michelsen et al., 1998; Hobbie & Colpaert, 2003; Craine et al.,
2009). One previous study on EMF-hosting species in lower lati-
tude forests found, as we did, that EMF-hosting plants did not
exhibit 15N depletion (Mayor et al., 2015), but they did not
account for soil type, which we show here and others have shown
(Martinelli et al., 1999) also strongly affects foliar d15N. We sug-
gest that foliar d15N, in combination with data on the isotopic
signatures of inorganic and organic soil N and d15N of mycor-
rhizal tissues, may reveal key mechanisms involved in N-related
mycorrhizal mediated plant–soil feedbacks. Moreover, together,
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our results and those of Mayor et al. (2015), imply the intriguing
possibility that differences in foliar d15N among mycorrhizal
types may vary latitudinally, which may be evidence of differ-
ences in mycorrhizal functioning, limiting nutrients, or relative
dependence of N derived from N-fixing trees in tropical vs tem-
perate systems.

Biogeographical constraints on investigating the
mycorrhizal composition of tropical forests

Since congeneric AMF- and EMF-hosting species were sampled
on both sandy loam and clay, the patterns of trait variation that
we observed are not only a result of phylogenetic signal, although
we do not have enough statistical power to discern the relative
influence of species turnover vs plasticity. While, in our study, the
distribution of trait values between mycorrhizal types changed
consistently with predictions from the Gadgil, ‘short-circuit’, and
MANE hypotheses, it is important to note that all of the EMF-
hosting species we sampled for traits belonged to the Dipterocarp
family. As a result, some of the observed leaf trait differences
between EMF- and AMF-hosting trees may partly represent a
‘Dipterocarp effect’. There are fagaceous EMF-hosting genera in
the Lambir plot (Castanopsis, Lithocarpus), but they account for
only a small fraction of individuals and biomass, making the vari-
ance in EMF dominance at Lambir, and Borneo in general, inex-
tricably linked to the Dipterocarpaceae. While cause and effect are
hard to discern, it seems likely that the widespread success of the
Dipterocarpaceae arises in part from their EMF associations, com-
bined with their wide range of trait values allowing them to be
competitive on soil types ranging from infertile to fertile. In order
to evaluate the generality of our findings, future tests in tropical
systems should prioritize forests where additional EMF host lin-
eages are present. Such cases, are, however, limited, since outside
of Southeast Asia, EMF host lineages are less diverse, and EMF-
hosting species are abundant mainly in monodominant stands
(McGuire, 2007; Peay, 2016; Fukami et al., 2017).

Conclusions

The composition of any forest community depends upon the rel-
ative fitness advantage of the alternative ecological strategies of
the species available to colonize from a biogeographic species
pool. Fundamental to those strategies are the coevolved associa-
tions that trees have with mycorrhizal fungi and the interplay of
these associations with plant resource economies (Averill et al.,
2019). The relative fitness advantage of alternative mycorrhizal
strategies is defined by their costs and benefits, which depend on
the environment, but the key environmental factors, and at what
scales they are most influential, are still poorly understood. At the
global scale, the mycorrhizal composition of forests varies with
climate, suggesting that temperature and precipitation shape the
relative fitness advantage of alternative mycorrhizal symbioses
(Steidinger et al., 2019). Here, at the community scale, we show
that the mycorrhizal composition of this southeast Asian rain
forest depends on soil lithology, suggesting that soil fertility
inherited from the parent material shapes the relative fitness

advantage of trees with different mycorrhizal associations. Our
finding that functional trait variation of tree species is to some
degree coordinated with mycorrhizal type reinforces the central
role of mycorrhizal symbiosis in plant resource economics strate-
gies. A comprehensive understanding of the mechanisms causing
variation in these relative fitness advantages is critical to explain-
ing the extensive local and global variation in mycorrhizal com-
position of forests and to accurately representing mycorrhizal–
vegetation interactions in Earth system models predicting carbon
and nutrient cycling.
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