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Mycorrhizae, aform of plant-fungal symbioses, mediate vegetation impacts
on ecosystem functioning. Climatic effects on decomposition and soil
quality are suggested to drive mycorrhizal distributions, with arbuscular
mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and

ectomycorrhizal (EcM) plantsin high-latitude/low-soil-quality areas.
However, these generalizations, based on coarse-resolution data, obscure
finer-scale variations and resultin high uncertainties in the predicted
distributions of mycorrhizal types and their drivers. Using data from
31lowland tropical forests, both at a coarse scale (mean-plot-level data) and
fine scale (20 x 20 metres from a subset of 16 sites), we demonstrate that
the distribution and abundance of EcM-associated trees are independent
of soil quality. Resource exchange differences among mycorrhizal partners,
stemming from diverse evolutionary origins of mycorrhizal fungi, may
decouple soil fertility from the advantage provided by mycorrhizal
associations. Additionally, distinct historical biogeographies and
diversification patterns have led to differences in forest composition and
nutrient-acquisition strategies across three major tropical regions.
Notably, Africa and Asia’s lowland tropical forests have abundant ECM
trees, whereas they are relatively scarce in lowland neotropical forests.

A greater understanding of the functional biology of mycorrhizal symbiosis
isrequired, especially in the lowland tropics, to overcome biases from
assuming similarity to temperate and boreal regions.

Many plants establish symbiotic relationships with soil microbes, ena-
bling themto access soil resources that would otherwise be unavailable
or to gain protection against biotic and abiotic stress’. One largely
recognized form of symbiosis is the association between the major-
ity of vascular plants and mycorrhizal fungi, which occursin or on the
roots and is known as mycorrhiza®. Mycorrhizal fungi can improve
plant mineral nutrition?, stress tolerance (for example, to drought)
and defence (for example, to soil-borne pathogens)®. In exchange, the
host plant provides the fungus with the carbon required for function-
ing’. Most trees associate with either arbuscular mycorrhizal (AM; but
refer torefs. 6,7) orectomycorrhizal (EcM) fungi, forming the AM and
EcM types, respectively. AM predominate in the number of host tree
species—about 72% of vascular plant species are AM and about 2% are

EcM®. AM and EcM types differ in their nutrient economies and effects
onsoil biogeochemistry®’, and variations in their relative dominance
may have large-scale consequences for ecosystem functioning and
biogeochemical cycles'®". Therefore, accurate characterization of
the distribution of mycorrhizal types and the factors that drive their
distributionis critical tounderstanding and modelling forest biogeo-
chemistry and, ultimately, climate feedbacks.

Differences in traits between AM and EcM fungi and between
AM and EcM-associating trees suggest differences in their nutrient
economies and foraging strategies. It is generally accepted that EcM
fungihave a higher capacity to mobilize nitrogen (N) and phosphorus
(P) from soil organic matter than AM fungi*’. The high capacity of
EcM fungi to exploit soil organic matter can lead to a reductionin
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litter decomposition (the Gadgil effect'?), as EcM fungi obtain car-
bon from their host plant and effectively compete with decompos-
ers such as saprotrophic fungi, which rely on decomposing organic
matter for carbon. Some AM fungi can also acquire N** and P from
organic sources by recruiting and hosting distinct bacteria in their
extraradical hyphae (the hyphosphere microbiome). Whereas EcM
fungi are mostly recognized for their high capacity to mobilize N and
Pinnutrient-limited and organic soils®", they, like AM fungi, also con-
tribute to the mobilization of other nutrients such as potassium (K),
magnesium (Mg), calcium (Ca), sulfur (S), iron (Fe), zinc (Zn), copper
(Cu) and manganese (Mn)'®. EcM trees may have longer-lived leaves and
morerecalcitrant litter, leading to a slower nutrient economy than AM
trees”. The combination of the poor-quality litter of EcM trees and the
high capability of ECM fungi to acquire nutrients from it may resultin
apositive feedback between slow decomposition rates and increased
soil organic matter accumulation’. Insuch forests, itis predicted thata
high accumulation of organic matter and a low availability of nutrients
ininorganic form may ultimately favour andlead toadominance of EcM
(the mycorrhizal-associated nutrient economy framework in ref. 9).
Differencesin the nutrienteconomies and foraging strategies between
EcMand AM fungiand between AM and EcM-associating trees may lead
to divergent costs and benefits along spatial environmental gradients
(but refer to ref. 18), which may result in different distributions.

The dominant hypothesis for global patternsin mycorrhizal sym-
biosisisthat therelative abundance of EcM decreases along agradient
from cold and/or dry to warm, wet climates through the effects of
climate on soil development and decomposition rates?. A recent
quantitative approximation of the global distribution of forest-tree
mycorrhizal symbionts found that ECM dominate at higher latitudes
(and higher elevations), where generally lower temperatures and pre-
cipitation lead to slower decomposition rates and lower availability of
nutrientsininorganic forms®. Conversely, AMwere found to dominate
atlower latitudes (and lower elevations), where warmer, wetter envi-
ronments lead to faster decomposition rates and higher availability
of nutrients in inorganic forms”. These global-scale approximations
of the distribution of AM and EcM appear to be consistent with their
different nutrient economies®’. However, these approximations are
based on a coarse resolution of global vegetation, climate and soil
patterns and obscure large variations at finer scales and dramatically
underrepresent tropical forests. As aresult, there remain high uncer-
tainties in both the predicted distributions of mycorrhizal types®*
and the drivers of those distributions.

Intropical forests, the dominance of ECM trees generally increases
withelevation”. Inlowland tropical forests, EcM associations are often
described as patchy and rare® and are generally suggested to be found
inforests characterized by single-species dominance, deep leaf litter
and nutrient-poor sites*?*, However, known counter-examples to
this generalization include tropical lowland forests dominated by
many EcM tree species (for example, the diverse mixed dipterocarp
forestsinSoutheast Asia* or mixed-legume forestsin tropical Africa®),
alack of association between the distribution of EcM host trees and
soil chemical properties” and forests dominated by single AM spe-
cies (forexample, Mora excelsa Benth. (Fabaceae))*. Additionally, the
differences in traits between EcM and AM tree species and between
EcM and AM fungal taxa supporting contrasting mycorrhizal nutrient
economies or foraging strategies do not always hold. EcM fungi do not
alwaysimprove plant nutrient uptake in comparison to AM fungiwhen
growninthe same soil medium?¥, and foliar traits of AMand EcM trees
do not always differ in the expected ways®®. These findings challenge
the existence of auniversally applicable mycorrhizal-associated nutri-
ent economy, particularly in lowland tropical forests (refs. 29,30 for
examplesinSouth American temperate regions), and suggest that the
drivers that shape their distribution need to be re-examined.

We evaluated the applicability of the mycorrhizal-associated
nutrient economy framework across lowland terra firme tropical

forests by testing the hypothesis that the distribution and abundance
of EcMtreesinlowland tropical forests are related to variations in soil
properties. We focused on EcM trees because the abundance of EcM
tree and AM tree individuals are generally inversely related"*. We
compiled data on the relative abundance of EcM trees (the propor-
tion of basal area (BA) contributed by EcM trees) and soil properties
of 31lowland tropical forests from the Forest Global Earth Observa-
tory (ForestGEO) plot network of research sites* and the literature
(Fig.1a, Extended Data Table 1 and Extended Data Fig. 1). We created
two datasets. The first dataset contained mean-plot-level dataon the
relative abundance of EcM trees, soil chemistry (Al, Ca, K, Mg, Mn, Na,
CEC (cation exchange capacity) and TEB (total exchangeable bases)
in cmol. kg™, plant-available P in mg kg™, pH and BS (percent base
saturation)) and soil texture (the proportion of sand, clay and silt
content) for 30 sites from three regions: neotropics, Africaand Asia.
A single site from Oceania was excluded from this mean-plot-level
dataset due to sample size (Methods; statistical analyses for the
coarse-scale data). The second dataset contained the fine-scale data
(quadrat-level; 20 x 20 m) on the relative abundance of EcM trees and
soil chemical properties for 16 sites (Extended Data Table 2), which
were the maximum number of sites with all trees >1 cm in diameter
at breast height (DBH) identified and with the most complete and
consistently measured set of soil variables, including Al, Ca, K, Mg, Na,
Fe, Mn, plant-available P and pH. Refer to methods for a full descrip-
tion of the datasets.

We used principal component analysis (PCA) to construct gradi-
entsinsoil properties at both coarse (using mean-plot-level soil data)
and fine (using soil data atevery 20 x 20 m quadrat) scales. Both PCAs
revealed similar patterns (Fig. 1b,c). The first principal component
(PC) of both PCAs described variation in soil chemical properties (soil
nutrientavailability) and increased with increasing concentrations of
soil bases and pH and with decreasing Al (Extended Data Table 3). The
second PC was comparable at both fine and coarse scales. The second
PC described variation in soil physical properties and P availability
and increased with clay content (Fig. 1b) and Na (Fig. 1b,c) concentra-
tion and with decreasing sand content (Fig. 1b) and P concentration
(Fig. 1b,c). We included the two PCs from both PCAs as covariates in
bothageneralized linear model (GLM) and ageneralized linear mixed
effects model (GLMM) to assess the association between EcM tree
abundance in BA and soil properties. The GLM was used to analyse
coarse-scaleassociations across forests, whereas the GLMM was used to
analyse fine-scale associations withinand among forests. Given a high
presence of zeroes in the fine-scale dataset (Extended Data Table 2),
the GLMM was a joint model with two components, a discrete com-
ponent to assess if an event occurs (the probability of observing EcM
trees) and a continuous component to assess the event’sintensity given
that it occurs (the relative abundance in BA of EcM trees conditional
on their occurrence; Methods)*?*. We included quadrat-level topo-
graphy (elevation, slope and convexity) and (total) BA in the analysis
on fine-scale data to characterize the terrain and to control for differ-
ences in exposure (a higher opportunity of observing EcM trees and
higher relative abundance of EcM trees in quadrats with larger BAs or
the opposite), respectively.

Results and discussion

The relative abundance in BA of EcM trees in lowland tropical for-
ests exhibited high variability and was unrelated to the variation in
soil properties at both coarse and fine scales (Figs. 2 and 3). At the
coarse scale (using mean-plot level data), the relative abundance of
EcM trees ranged from 0.02% to 84.5% BA (mean 22%), being lower in
the neotropics (range = 0.02-2.3%, mean = 0.8) than the Afrotropics
(range = 2.3-62.6%, mean = 30.4) or Southeast Asia (range = 3.2-84.5%,
mean =30.5). Additionally, the relative abundance of EcM trees at the
coarse scale wasindependent of soil variation among and within these
three major tropical regions (Fig. 2 and Extended Data Table 4).
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Fig.1|Study sites and variation in the relative abundance of EcM trees and
soil properties. a, Location of the study sites and the relative contribution of
EcM trees to BA. Plot identities are mapped in Extended Data Fig. 1. b,c, Biplots
from two PCAs. PC1and PC2indicate the firstand second PCs for each PCA,
respectively. Biplotin b uses mean soil plot-level data (coarse scale) whereas the
biplotin cuses spatially detailed (quadrat-level; 20 x 20 m) soil data (fine scale)
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At the fine scale (20 x 20 m quadrats), the probability of observ-
ing EcM trees and therelative abundance of those EcM trees were also
independent of both PC1 and PC2 (Fig. 3 and Extended Data Table 5).
Althoughthere was adeclinein the probability of observing EcM trees
with an increment in the availability of nutrients in inorganic form
(PC1, Fig. 3a), the decline was small. That is, even in quadrats with
higher availability of nutrients, the mean probability of observing an
EcMtreeremained above 0.75. The observed decline in the probability
of observing EcM trees with increasing availability of soil nutrients
was primarily driven by the low presence of EcM trees in high-fertility
quadrats within three out of 16 sites (Fig. 3¢). The three sites, namely,
Danum Valley in Malaysia, Khao Chong in Thailand and Amacayacu
in Colombia, exhibit 2%, 10% and 48% of quadrats without EcM trees,
respectively (Supplementary Discussion). After excluding these three
sites from the analysis to evaluate theirimpact on the observed nega-
tive association between the probability of observing EcM trees and
PClatthe fine scale, the negative association disappeared (Extended
Data Table 6). Moreover, when the analysis at a fine scale was performed
with 40 x 40 m quadrats (Methods), the negative association between
the probability of observing EcM trees and PC1 was no longer evident,
indicating the robustness of our analysis across spatial scales.

Ourresults are consistent with studies from specific lowland tropi-
cal forests (but refer to ref. 35). For example, in the southern part of
Korup National Park, Cameroon, areas with a higher abundance of
EcM trees are not associated with lower concentrations of soil nutri-
ents (P and N)*® (data from this study site was included in our analysis

ata coarse scale; Extended Data Table 1). In Guyana, transect surveys
indicate that forests with high dominance of the leguminous EcM tree
species Dicymbe corymbosa and D. altsoniihave high variability in soil
texture and macronutrients”, suggesting alack of association between
soil attributes with the local distribution and abundance of EcM trees
(also ref. 23). On the contrary, the EcM BA in a forest in Malaysia was
higheronless fertile soil types, which may be due to the overall higher
BAonthoseareas™, and is consistent with our finding that the propor-
tion of ECM BA increases with the total BA (Extended Data Table 5),
particularly in SE Asia (Extended Data Fig. 2).

Our analysis demonstrates that EcM trees in lowland tropical for-
estsarewidespread across abroad range of soil properties. Evenif ECM
fungi have a high capability to mobilize organic forms of soil nutrients,
which are thought to predominate on nutrient-depleted soils, high
variability in how much of the nutrients are ultimately transferred
to their host plants can disrupt the expected association between
the dominance of EcM-associated trees and soil fertility. Specifically,
the exchange of C and nutrients between EcM hosts and fungi is not
universally reciprocal. Some EcM fungi hoard nutrients, leading to a
reduction in nutrient transfer to host trees, despite receiving carbon
from them™ (also refs. 39,40). Under low soil nutrient availability, both
AM* and EcM*° mycorrhizal fungi may become nutrient limited*?,
therebyrestricting nutrient transfer to their host. One potential strat-
egy to counteract fungal nutrient hoarding could be the prevalence
of non-mycorrhizal plants or the rejection of the fungal infection by
mycotrophic plants, particularly under conditions of extremely low
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Fig.2|The association between the relative abundance of EcM trees and
soil properties across 30 lowland tropical forests from three major tropical
regions. a,b, The y axes indicate the plot-level proportion of BA contributed by
EcMtrees or the relative abundance (rel. abun.) of EcM trees in BA. The x axes
indicate PClinaand PC2inb. The colours yellow, blue and red correspond to
tropical Asia, tropical Africa and the neotropics, respectively. Dots indicate
individual observations. Light-coloured lines correspond to 200 draws from the
posterior predictive distribution of amodel that tests the relationship between
the relative abundance of EcM trees and the PCA axes. The darker-coloured
lines indicate the mean predictions from these draws. PC1 was correlated with
soil nutrient availability, whereas PC2 was correlated with soil texture and P
availability (Fig. 1b). Dashed lines indicate that the slopes are not different from
zero (Extended Data Table 4).

nutrient availability, an aspect that warrants further investigation.
The non-reciprocal exchange of C and nutrient between mycorrhizal
hosts and fungi adds to the complexity of the symbiotic relationship.

High variability in the exchange of resources between EcM sym-
biotic partners could result from the high phylogenetic diversity of
EcM fungi****. EcM fungi exhibit remarkable diversity, comprising
over 20,000 species fromabout 80 EcM fungal lineages**. In contrast,
AM fungi descend from the phylum Glomeromycota (a proposed sys-
tematics places AM fungiin the Glomeromycotina subphylum within
the phylum Mucoromycota*) and comprises about 345 species (as of
January 2023; www.amf-phylogeny.com). However, although there has
been considerable research on AM fungi due to their widespread dis-
tribution and established association with the majority of land plants,
studies on EcM fungi have been relatively limited and predominantly
centred on fungi (and hosts) from the Northern Hemisphere*®. In addi-
tion, there is a widespread tendency to contrast EcM and AM fungal
species as monolithic entities, disregarding their inherent diversity
and variations within each group. Infact, not all evolutionary lineages
of EcM fungi have retained the genetic ability to degrade organic mat-
ter”, EcM fungi commonly occur in both low- and high-fertility soils
independent of hostidentity and host distribution*, and variationsin
the EcM fungal compositionare linked with large differencesin growth
rates of the host partner®. These observations, coupled with others that

indicate thateven differentisolates of the same EcM fungal species may
have different traits and affect their host and environment in distinct
ways* suggest the existence of a high variability in the functional biol-
ogy of EcM fungi and that this variability could be linked to different
edaphic conditions®.

The widespread distribution of ECM host lineages implicitly sup-
ports large variability in the functional biology of EcM fungi. Large
well-known EcM host lineages (for example, Myrtaceae (Eucalyptus),
Dipterocarpaceae, Fagaceae, Fabaceae (Detarioideae) and so on) occur
across a very wide range of soil and hydrological environmental con-
ditions™, supporting the idea that EcM fungi can occur across a wide
range of environmental conditions (also ref. 53), probably with dif-
ferent costs and benefits to the host plant*. These EcM fungi could
encompass different genotypes and species with different functions™
or thesame ECM fungal genotypes and species with plastic responses
to variation in their biophysical environment>. Given the potential
for various functional biologies within mycorrhizal fungal guilds and
theimportance of mycorrhizae for the dynamics of natural ecosystems,
itis imperative that we improve our understanding of the functional
biology of mycorrhizae, particularly in lowland tropical forests, which
arestill poorly understood in comparison to northern temperate and
boreal regions.

Wealso found that therelative abundance of EcM treesis lower in
lowland neotropical forests than in lowland tropical forests in Africa
and Asia (Fig. 2a,b and Extended Data Table 4). Historical biogeogra-
phy is an important factor explaining the low relative abundance of
EcM trees in lowland neotropical forests®**. In neotropical forests,
most identified EcM hosts belong to non-dominant taxa (small trees,
shrubs and lianas) within the genera Coccoloba (Polygonaceae), Gne-
tum (Gnetaceae) and Guapira, Pisonia and Neea (Nyctaginaceae)*®.
There are known exceptions within the Polygonaceae family (for exam-
ple, Coccoloba uvifera and Gymnopodium floribundum) that form
monodominant patches of vegetation in their native ranges®. Domi-
nant EcM hostsinlowland neotropical forests belong to the Fabaceae
(at least four species within the genus Aldina and at least three spe-
cies within the genus Dicymbe) and Dipterocarpaceae (at least one
species, Pseudomonotes tropenbosii)”’. Contrary to lowland neotropi-
cal forests, the pool of confirmed EcM-associated tree species (and
individual tree sizes) is larger and appears to have a wide geographic
distribution in the palaeotropics®*”. These differences in the pool of
available EcM tree host species and their biogeographical distribution
among tropical regions may explain the lower relative abundance of
EcM trees in lowland neotropical forests. Whereas biogeographic
differences have already been recognized in the literature about the
current distribution of EcM plant species®, several questions remain
unanswered. For instance, key knowledge gaps include why diptero-
carps prevailin Asiabut notin other tropical regions or why detarioid
legumes do not predominate in Asia. The answers to these questions
are elusive and outside the scope of this study. Better botanical data
onspecies’ taxonomies and geographic distributions, combined with
corresponding phylogeographies, would help informthese knowledge
gaps. Concomitantly, several thousand (about 9,000) tree species
are yet to be discovered, with 40% of them estimated to be in South
America®. Thisincomplete understanding of tree biodiversity hampers
our ability to create accurate and detailed maps of mycorrhizal types
intropical regions. Acquiring comprehensive baseline information is
essential for addressing this limitation.

Ourresults haveimportantimplications for both the mycorrhizal-
associated nutrient economy framework and the current efforts to
incorporate mycorrhizal nutrient acquisitioninto dynamic global veg-
etation models (DGVMs). Whereas the mycorrhizal-associated nutrient
economy framework classifies temperate forests based on mycorrhizal
associations and nutrient economies’, our findings reveal that the myc-
orrhizal associations in lowland tropical forests are far more complex
and diversethan previously recognized. In lowland tropical forests, we
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Fig.3| The association between the probability of observing EcM trees and
their relative abundance in relation to soil fertility across and within16
lowland tropical forests. a,b, The black lines indicate the mean quadrat-level
(20 x 20 m) predictions for the probability (prob.) of observing EcM trees (a)
and their conditional relative abundance (cd. rel. abun.) in BA across sites (b).
Coloured dots indicate observations, varying by site (Extended Data Table 2),
whereas the coloured lines show site-level mean predictions. Shaded areas
around the mean lines show the 95% credible intervals of these predictions.
c,d, Dots indicate mean site-level coefficients for the probability of observing
EcMtrees (c) and the relative abundance of these EcM trees (d) in relation to soil
fertility (PC1). The x axes indicate the value of the coefficient on the logit scale,

and the y axes indicate the study site. Error bars indicate the 95% credible interval
of the coefficient. Mean prediction lines (a,b), mean site-level coefficients (dots;
c,d) and credible intervals (shaded areas and error bars) were estimated using
200 draws from the posterior predictive distribution of the Zero-Altered Beta
(ZABE) regression used to estimate the probability of observing EcM trees and
their conditional relative abundance in BA. Colours represent 16 sites from

the lowland tropical regions of Africa (Af., two sites), Asia (As., eight sites), the
neotropics (Neo., five sites) and Oceania (O., one site). Dashed lines indicate that
the predicted slopes (a,b) and estimated coefficients (c,d) are not different from
zero. PClis positively correlated with soil nutrient availability (Fig. 1c).

have identified substantial variability in the abundance of EcM trees
within and across three major tropical regions, independent of soil
variation. This challenges the assumption of clear gradientsin nutrient
economies in the transition from AM-dominated to EcM-dominated
standsinlowland tropical forests, thereby questioning the applicability
of the mycorrhizal-associated nutrient economy framework in these
ecosystems. Differences in resource exchange among mycorrhizal
partners, stemming from diverse evolutionary origins of mycorrhizal
fungi, may decouple soil fertility from the advantage provided by
mycorrhizal associations. Studies describing the functional biology
of mycorrhizal symbiosis across agreater number of mycorrhizal and
plantlineages are required, especially in the lowland tropics, where our
current conception of the symbioses may be based on overinterpreted
results (ref. 60) and biased by assuming that they function similarly
to those in temperate and boreal regions. Furthermore, integrating a
mycorrhizal frameworkinto DGVMs to improve representations of the
tropical biome under future climate change scenarios poses substan-
tial challenges due to the limitations of models assuming a universal
prevalence of AM plantsin lowland tropical forests, failing to capture
the observed variations in mycorrhizal dominance. Particularly in

tropical Africa and Asia, where EcM are prevalent, these limitations
may become evident. Overall, our study underscores the complexity of
mycorrhizal associations, raises questions about existing frameworks
and highlights the difficulties inincorporating mycorrhizal dynamics
into DGVMs for accurate representation of the tropical biome.

Methods

Tree census, estimation of BA and mycorrhizal type
classification

The ForestGEO plots® are divided into 20 x 20 m quadrats, the number
of which varies between plots due to differences in plot sizes (from
2 hainBukit Timah, Singapore, to 52 hain Lambir, Malaysia). For each
ForestGEO plot, all trees >1 cmin DBH are tagged, mapped, measured
and identified to species, following standardized census protocols™.
Tree species were assigned to amycorrhizal type (AM or ECM) based on
arecently compiled database of mycorrhizal types for plant genera®.
The use of checklists to assign mycorrhizal traits to host plants has
been widely criticized and extensively discussed elsewhere®***, One
of the criticisms is that these lists may include errors resulting from
misidentification of root mycorrhizal structures or dataderived using
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flawed diagnostic criteria. However, the checklist employed in this
study addresses these limitations by comparing records of mycorrhizal
status with expert opinions (ref. 61), thereby providing amore reliable
list of plant mycorrhizal associations. For each quadrat, we calculated
the proportion of BA contributed by EcM trees by dividing the BA
(m?) of EcM trees by the total tree BA (m?). Multiple plant species are
associated with both mycorrhizal fungiand N-fixing bacteria®“.In our
dataset, the quadrat-level number of individuals and BA of these plant
speciesis generally less than 1% and were excluded from our analyses.

Soil sampling and measurement of soil properties

The standard soil sampling method involved taking one sample at the
centre of each40 x 40 m quadrat and another sample2,8or20 mina
randomly chosen direction to capture fine-scale variation in soil prop-
erties®. For the 2-ha plot at Bukit Timah, we collected one soil sample
in every other 20 x 20 m quadrat. Samples were taken from the top
10 cm, which contains many fine roots and integrates nutrient cycles.
We measured exchangeable soil cations (Al, Ca, Fe, K, Mg, Na, Fe, Mn),
plant-available P and pH on soils that had been air dried at ambient
temperature and sieved at 2 mm. Soil pH was measured using a glass
electrodeinal:2soil:solutionratio in water. Exchangeable soil cations
were measured by extraction in 0.1 M BaCl, (2 h,1:30 soil to solution
ratio), with detection by inductively coupled plasma optical-emission
spectrometry on an Optima 7300 DV (Perkin-Elmer)®, except for Al,
Mnand Fe for Ituri, Democratic Republic of Congo, which were quanti-
fied using Mehlich-Ill extracting solution®®. TEBs were calculated as
the sum of Ca, K, Mg and Na. Effective cation exchange capacity (ECEC)
was calculated as the sum of Al, Ca, Fe, K, Mg, Mn and Na. Percent
base saturationwas calculated as (TEB + ECEC) x 100. Plant-available
P was extracted in Bray-1solution®’, with detection by automated
molybdate colorimetry on a Lachat Quikchem 8500 (Hach), except
for BCI, Panama, where P was quantified using Mehlich-IIl extract-
ant’®. The Mehlich-Ill extracting solution is used as an alternative to
the Bray-1P (for P) and BaCl, (for the base cations) extractants but
gives relatively different concentrations depending on the acidity
of the soil”’. Previous studies have shown that Mehlich-Ill extraction
yields higher results for Fe and Mn compared with other extraction
methods in alkaline soils, such as BaCl,. This has been attributed to
the higher acidity of Mehlich-Ill and its superior acidic buffering
capacity, which enhances the solubility of Fe and Mn"” For the Ituri
plot, where the mean pH is 4.03, indicating an extremely acidic soil,
we did not anticipate large differences between the extraction meth-
ods. Similar studies have shown that Mehlich-IIl extracts more P than
Bray-1under acidic conditions” (but refer to ref. 73). Because the pH
in the BCI plot, Panama, is moderately acidic (mean =5.79), we did
not anticipate large differences. Moreover, we also conducted the
analyses of the present manuscript excluding both the Ituri and BCI
plots, and the results remained consistent. Soil texture (the propor-
tion of sand, clay and silt content) was estimated using the sieving
soil analysis technique.

Imputation of missing soil values for the soil dataat a
coarsescale

Duetoavariety of logistical considerations, several sites in the dataset
atacoarse scale had missing values (NAs) for some soil variables (Sup-
plementary Table 1). We imputed those NAs in the compiled dataset
using a regularized iterative PCA algorithm™ and then constructed
the PCA on the complete dataset. This procedure involved three
steps. Wefirst selected a fixed number of dimensions via the function
estim_ncpPCA from the R package FactoMineR (version 2.4”) and the
leave-one-out cross-validation method. The optimal number of fixed
dimensions for this dataset was three. We thenimplemented the regu-
larized iterative PCA algorithm with the functionimputePCA fromthe R
package missMDA (version 1.18™) using the fixed number of dimensions
estimated inthe previousstep. The regularized iterative PCA algorithm

delivered the complete dataset by replacing the missing values, or NAs,
with the (regularized) fitted values. Lastly, we constructed the PCA
using the complete dataset via the function PCA implemented in the
R package FactoMineR. The implemented gap-filling method did not
have a direct impact on the results. For each observation in the com-
piled dataset, we added a constant value (one), transformed it using
the natural logarithm and standardized it by calculating the z-scores
before implementing the iterative PCA algorithm.

Interpolation of soil variables for the analysis at a fine scale

Fortheanalysisatafine scale, we used ordinary krigingimplementedin
theR package geoR (version 1.8-1°) to obtain spatial predictions (spatial
interpolation) for eachsoil variable ata20 x 20 m spatial resolution. We
transformed the soil variables using a Box-Cox power transformation
withalambdavalue of 0, 0.5 or1°°. Assuming isotropy, we performed a
polynomial trend-surface regression of the forms = x +y +x?+)*+ x*y,
where sis the transformed soil variable, x and y are the coordinates in
metres of each sampling location and x * y indicate the multiplication
between x and y coordinates. We extracted the residuals from the
trend-surface regression and used them to compute empirical vari-
ograms with the function variog. We fit a set of five models (Gaussian,
circular, exponential, spherical and Cauchy) to the empirical vari-
ograms to estimate covariance parameters using the function variofit.
We selected the best model by the principle of least squares and esti-
mated kriged means using ordinary kriging via the function krige.
conv. We added back the kriged means to the polynomial trend and
back transformed the resulting spatially predicted soil variablesto the
original scale using the inverse Box-Cox transform. We constructed
a PCA using the pooled 20 x 20 m kriged soil data across all plots to
derive orthogonal composite variables to characterize the variability in
soil chemical properties across and within plots with the PCA function
in the FactoMineR package. For each kriged soil variable, we added a
constant value (one), transformed it using the natural logarithm and
standardizedit by calculating the z-scores before constructing the PCA.

Statistical analyses for the coarse-scale data

For the analysis at a coarse scale, we modelled the mean relative
abundancein BA of EcM trees as a function of the first and second PCs
(Fig.1b; PCland PC2, explaining 48.2% and 26.7% of the total variation,
respectively) of the PCA constructed using mean-plot-level soil data
totest theirassociation across sites from three major tropical regions
(or continent) (Africa (five sites), Asia (16 sites) and the neotropics
(ninesites)). Weincluded a discrete main effect for the tropical region
and its interaction with both PCs. The discrete main effect assesses
whether there are variations in the mean relative abundance of EcM
trees across different regions. The interaction termevaluates whether
therelationship between therelative abundance of EcM trees and soil
attributes, asindicated by both PCs, varies among the different regions.
We excluded one site (Wanang (tag ee); Extended Data Fig.1) from the
analysis at a coarse scale because it was the only site from Oceaniain
our dataset. By excluding Wanang, we were able to test for interactions
betweentheregionandthe PCs. Theresponse variable (the meanrela-
tiveabundance in BA of EcM trees) is continuous and restricted to the
openunitinterval (0,1) (greater than 0 and less than 1; Supplementary
Fig.1a). Given the nature of the data (continuous-based proportions),
we constructed a GLM assuming a beta error structure. We param-
eterized the beta error structure using a mean () and a precision (¢)
parameter (beta (u, ¢)) instead of the more common parameterization
that includes two positive shape parameters”. u is the mean of the
response variable (the relative abundance of EcM trees) and is mod-
elled through alogit link function. ¢ is the precision, which is modelled
through alog-link function, and for a fixed i, the larger the value of ¢,
the smaller the variance of the response variable””. Both gand ¢ can be
modelled asafunction of covariates under this parameterization of the
beta distribution”’. Accordingly, we also allowed ¢ to vary by region.
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Statistical analyses for the fine-scale data

For the analysis at a fine scale, we modelled the mean relative abun-
dancein BA of EcM trees as a function of the first (Fig. 1c, PC1, 51.4% of
total variation) and second PCs (PC2, 18.6% of total variation) of the
PCA constructed using fine-scale-level soil data to assess its associa-
tion with soil nutrient availability among plots and within each plot.
The observation unitis the quadrat (20 x 20 m), and multiple quadrats
arenested within each of the 16 plots. The response variable (the mean
relative abundance on BA of EcM trees) is continuous, it takes values
fromthe openunitinterval (0,1), and it has alarge probability mass at
zero (quadrats without EcM trees; Supplementary Fig. 1b). We used
a GLMM, assuming a Zero-Altered Beta distribution (ZABE)*****. The
ZABE distribution is a piecewise distribution or joint model with two
components. A discrete component uses a Bernoulli distribution to
assess if an event occurs, and a continuous component uses a beta
distribution to assess the event’s intensity given thatit occurs®?**. The
ZABE distribution has three parameters: 6 for the discrete component
(or Bernoulli process) and u and ¢ for the continuous component
(orbetaprocess). fisthe probability thatyis one, thatis, P(y=1) = 6,and
pand ¢ follow the previous description of the beta distribution, thatis,
beta (i, ¢). The Bernoullidistribution is viewed as the distribution for
EcM occurrence in a quadrat. The beta distribution is considered for
the relative abundance of EcM trees in the same quadrat, conditional
on the presence of EcM trees. Both 8 and i were modelled through a
logit link functionand ¢ through alog-link function. It should be noted
that each component of the ZABE model (discrete and continuous
component) can include the same or a different set of covariates and
random effects®*7%,

In the model, we included the main effects of both PCs (PC1and
PC2, Fig. 1c) in both components of the ZABE model to provide a
community-level (fixed effects) indication of the association of soil
nutrient availability as indicated by both PCs with the probability of
observing EcM trees (discrete component) and with their relative
abundance (continuous component). We included site (forest plot
identity) as a random intercept for both components of the ZABE
model. This random intercept allowed the probability of observ-
ing EcM trees and their relative abundance to vary among plots. We
included site-level random slopes for both PCs in both components
ofthe ZABE model. This was done to allow the community-level coef-
ficients (fixed effects) of the covariates (both PCs) to vary among plots.
Italso provided a within-plot indication of the association of soil nutri-
ent availability with the probability of observing EcM trees and with
theirrelative abundance. Local variations in topography are known to
impact soil properties and community composition”. We calculated
quadrat-level slope and convexity (the mean elevation of one 20 x 20 m
quadrat relative (minus) to the mean of its immediate neighbours)
from elevation data using the function fgeo_topography from the
fgeo package (version 1.1.4°°). We included these two covariates and
the quadrat-level elevation in both components of the ZABE model
to characterize the terrainamong (as fixed effects) and within forests
(asrandom slopes). We did not include mean annual air temperature
and mean annual precipitation in the model because the former was
relatively constant across plots, and their within-plot variation among
quadrats was probably minimal. The total quadrat-level BA was highly
variable within and among plots (Extended Data Fig. 2a), indicating
high variationinforest structural complexity, successional stages and
forest maturity among and within plots®. We included quadrat-level
total BA asanadditional covariatein both processes of the ZABE model
to account for this variability. This addition also helped to control for
differences in exposure, as it accounts for a higher opportunity of
observing EcM trees and a higher relative abundance of EcM trees in
quadrats with larger BAs or the opposite. Total BA was transformed
with the naturallogarithm and was included as both fixed and random
(slope) effects. All predictorsincluded in the model were standardized
by calculating their z-score. This standardization allowed parameters

to be comparable. All R? determined by pairwise correlations among
covariates among forests were <0.4 (Supplementary Table 2), indi-
cating that all the described covariates could safely be included in
the model®”.

We accounted for the spatial dependency in both components
of the ZABE model by specifying a spatially structured random effect
using areparameterization of the Besag-York-Mollié (BYM2) model®.
The BYM2 model in the continuous component of the ZABE model
wasincorporated asa copy of the BYM2 model in the discrete compo-
nent. Thatis, the spatial random effect in the continuous component
(copy) shares the same hyperparameters as the discrete component
(original) but is multiplied by a scale parameter § estimated from the
data®*. The incorporated copy feature also links both components of
the ZABE model.

We performed an additional analysis for the dataat afine scale to
test whether our results are robust to differences in the spatial scale
(there might be just a few emergent trees in a 20 x 20 m quadrat) by
using aresolution (quadrat size) of 40 x 40 minstead of the20 x 20 m
resolution. Using a resolution of 40 x 40 m implied suppressing an
entire row and column from the plots matrices.

Statistical software and model evaluation and inference

We performed all the analyses in R (version 4.2.0%). For the analysis
atacoarse scale, we fitted the beta model in Stan®, which fits models
using the Hamiltonian Monte Carlo algorithm, with its interface to R
via cmdstanr (version 0.4.0%) and using the package brms (version
2.16.1%%%°), We estimated the model using four chains of 2,000 itera-
tions, each with aburn-in fraction of 1/2. We monitored Markov Chain
mixing properties and checked parameter convergence graphically
viatrace plots of the estimated coefficients and by checking the Rhat
metric®®. For the analysis at a fine scale, we fitted the ZABE model
(GLMM) using INLA (version 22.05.07”") inR because of its speed and the
straightforward implementation of spatial random effects. A descrip-
tionofthe priors used inboth analysesis described in Supplementary
Note 1. Weinspected the goodness-of-fit of the full model for the analy-
sesatacoarse (Supplementary Fig.2a) and fine scale (Supplementary
Fig. 2bc) via posterior predictive model checks’, where predictions
from the fitted model were compared to the observed data. Results
are presented based on the mean and 95% credible intervalsindicated
insquare brackets.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

ForestGEO plot data can be obtained upon request via the ForestGEO
portal at http://ctfs.si.edu/datarequest/. All data sources are listed in
Extended Data Table 1. PCA axes and the contribution (proportion)
of EcM trees to basal area can be found at https://doi.org/10.5281/
zenodo.10044772 ref. 93.

Code availability
The codetoruntheanalyses atboth coarse and fine scales can be found
athttps://doi.org/10.5281/zenodo.10044772 ref. 93.
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Extended Data Fig.1| Location of the 31study sites. Letters indicate the tags The names of each study site are enclosed in parentheses. Thirty sites were used
used to identify plotsin the principal component analysis (PCA) of soil data, inthe analysis at a coarse scale, whereas 16 sites (shown in bold and italics) were
constructed using coarse scale soil data (Fig. 1b and Extended Data Table 1). used for the fine scale analysis (see Methods). Map made with Natural Earth.
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Extended DataFig. 2| Variation in quadrat-level basal area and its total BA. The x-axes show the value of the coefficient on the logit scale, with the
association with the probability of observing EcM trees and their relative y-axes again showing the study site. Error bars show the 95% credible interval
abundance in 16 lowland tropical forests. a, Shows the distribution of of the coefficient. These coefficients and their credible intervals derive from
the quadrat-level total basal area (BA) after applying a natural logarithm 200 draws from the Zero-Altered Beta (ZABE) regression’s posterior predictive
transformation. The x-axis represents the transformed total BA for each distribution. This regression estimated the probability of observing EcM trees
20 x 20 m quadrat, whereas the y-axis indicates the study site. Vertical lines at and their conditional relative abundance in BA, with the total quadrat-level basal
the base of each density curve indicate individual observations. b,c, Present areabeinglogarithmically transformed before the analyses. The study includes
mean site-level coefficients, with panel b representing the probability (Prob.) 16 sites from lowland tropical regions in Africa (Af., two sites), Asia (As., eight
of observing EcM trees and panel c for their relative abundance (conditional sites), the neotropics (Neo., five sites), and Oceania (O., one site). Dashed lines
onthe presence of EcM trees; Cd. Rel. Abun.) in relation to the quadrat-level indicate that the coefficients are not different from zero.
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Extended Data Table 1] List of the 31 study sites®*"*

Tag Region Site Tree data DBH cut-off Soil data
a Neotropics San Lorenzo ForestGEO >=1cm ForestGEO
b Neotropics BCI ForestGEO >=1cm ForestGEO
c Neotropics Yasuni ForestGEO >=1cm ForestGEO
d Neotropics Amacayacu ForestGEO >=1cm ForestGEO
e Neotropics Lugquillo ForestGEO >=1.cm ForestGEO
f Neotropics Manaus ForestGEO >=1cm ForestGEO, 94
g Neotropics Nouragues PP ForestGEO 95 >=10cm ForestGEO
h Neotropics Paracou ForestGEO >=10cm 96
i Neotropics Nouragues GP ForestGEO 95 >=10cm ForestGEO
j Africa Newbery P-HEM 36 >=10cm 25,36
k Africa Korup ForestGEO >=1cm 97
| Africa Rabi ForestGEO >=1cm ForestGEO
m Africa Newbery P-LEM t 36 >=10cm 36
n Africa Ituri (Lenda 1) ForestGEO >=1cm 98, ForestGEO
o Asia Sinharaja ForestGEO >=1cm ForestGEO
p Asia HKK (Huai Kha Khaeng) ForestGEO >=1cm ForestGEO
q Asia Huai Krading ForestGEO >=1cm 99
r Asia Mae Ping ForestGEO >=1cm 99
s Asia Kapook Kapieng ForestGEO >=1cm 99
t Asia Khao Chong ForestGEO >=1cm ForestGEO
u Asia Pasoh ForestGEO >=1cm ForestGEO
v Asia Chiang Dao ForestGEO >=1cm 99
w Asia Bukit Timah ForestGEO >=1cm ForestGEO
X Asia Mo Singto ForestGEO >=1cm ForestGEO

Asia Lambir ForestGEO >=1cm ForestGEO
Asia Belalong ForestGEO >=1cm 100,101
aa Asia Danum ForestGEO >=1cm ForestGEO
bb Asia Sepilok alluvial ForestGEO >=5cm 102
cc Asia Sepilok sandstone ForestGEO >=5cm 102

dd Asia Sepilok kerangas ForestGEO >=5c¢cm 102

ee* Oceania Wanang ForestGEO >=1cm ForestGEO

Tag is an identification ID for each site (see Extended Data Fig. 1). Region indicates the major tropical region. Site indicates the site name. Tree data and soil data specify the data sources
for the tree and soil data for each forest, respectively. DBH cut-off indicates the minimum DBH that was sampled. ' For the Newbery P-HEM (tag j) and P-LEM (tag m) sites, we used the mean
(proportion) contribution of EcM trees to basal area, and the mean soil data from both the P-HEM and P-LEM transects, as reported in*. * The sole site from Oceania (Wanang, tag ee) was
excluded from the coarse scale analysis due to sample size (see Methods, statistical analyses for the coarse-scale data).
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Extended Data Table 2 | List of the 16 study sites for the analysis at a fine scale

Tag Region Site Elev-m MAT-C MAP-mm N. dry months Size (ha) Long. Lat. N. N.Zeros
d  Neotropics Amacayacu, Colombia 94 25.8 3215 0 25 -70.2678 -3.8091 625 298
b Neotropics Barro Colorado Island (BCl), Panama 120 271 2551 4 50 -79.8461 9.1543 1250 769
w Asia Bukit Timah, Singapore 99 26.9 2473 0 2 103.78 1.35 50 1
aa Asia Danum Valley, Malaysia 150 26.7 2822 0 50 117.688 5.1019 1250 24
p Asia Huai Kha Khaeng, Thailand 596 235 1476 5 50 99.217 15.6324 1250 282
n Africa Ituri, D.R. Congo 775 243 1682 3 10 28.5826 1.4368 250 0
t Asia Khao Chong, Thailand 235 271 2611 25 24 99.798 7.5435 600 57
y Asia Lambir, Malaysia 174 26.6 2664 0 52 114.017 4.1865 1300 3
e Neotropics Luquillo, Puerto Rico 381 22.8 3548 0 16 -65.816 18.3262 400 303
f  Neotropics Manaus, Brazil 60 26.7 2600 2 25 -59.7858 -2.4417 625 120
X Asia Mo Singto, Thailand 770 235 2100 55 30 101.35 14.4333 750 30
u Asia Pasoh, Malaysia 80 27.9 1788 0 50 102.313 2.982 1250 0
| Africa Rabi, Gabon 41 26 2299 3-4 25 9.88  -1.9246 625 2
o Asia Sinharaja, Sri Lanka 500 225 5016 0 25 80.4023 6.4023 625 6
ee Oceania Wanang, Papua New Guinea 140 25.8 4000 0 50 145.267 -5.25 1250 21
¢ Neotropics Yasuni, Ecuador 230 28.3 3081 0 25 -76.397 -0.6859 625 2

Tag is an identification ID for each site (see Extended Data Fig. 1). Region indicates the major tropical region (neotropics [five sites], Asia [eight sites], Africa [two sites], and Oceania [one site]).
Site indicates the site and country name. Elev-m is the mean elevation in meters. MAT-C is the mean annual temperature in Celsius. MAP-mm is the mean annual precipitation in mm. N. dry
months is the mean number of dry months in a year. Size (ha) indicates the area in hectares. Longitude and Latitude give the coordinates of each site. N. is the number of quadrats (20 x 20m)
per site and N. Zeros indicates the number of quadrats where no EcM individuals were found. Biophysical data were obtained from

32,103

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02298-0

Extended Data Table 3 | Principal component analyses (PCA) of soil data at coarse and fine scales

Soil attribute PC1 PC2
Coarse scale soil data
% Clay 0.04 (-) 22.79 (+)
% Silt 3.43 (+) 0.96 (+)
% Sand 0.35 (-) 23.56 ()
P (mg.kg-1) 3.86 (+) 8.38 (-)
Soil pH in water 10.04 (+) 1.15(-)
Mg (cmolc.kg-1) 13.46 (+) 0.04 (+)
K (cmolc.kg-1) 10.53 (+) 3.44 ()
Ca (cmolc.kg-1) 14.35 (+) 0.01 (+)
Na (cmolc.kg-1) 0.22 (+) 15.68 (+)
Mn (cmolc.kg-1) 341 (%) 18.19 (+)
Al (cmolc.kg-1) 5.52 (-) 4.72 (+)
CEC (cmolc.kg-1) 9.93 (+) 0.67 (+)
TEB (cmolc.kg-1) 14.5 (+) 0.15 (+)
% BS 10.35 (+) 0.27 (+)
Variance (%) 48.18 26.66
Cum. variance (%) 48.18 74.84
Eigenvalue 6.72 3.71
Fine scale soil data
Al (mg.kg-1) 14.71 (-) 1.57 (+)
Ca (mg.kg-1) 19.22 (+) 3.69 (+)
Fe (mg.kg-1) 7.98 (-) 13.03 (+)
K (mg.kg-1) 15.01 (+) 1.61 (+)
Mg (mg.kg-1) 18.40 (+) 4.04 (+)
Mn (mg.kg-1) 3.01 (%) 11.07 (+)
Na (mg.kg-1) 0.38 (-) 44.68 (+)
P (mg.kg-1) 242 (+) 20.17 (-)
Soil pH in water 18.86 (+) 0.14 (-)
Variance (%) 51.39 18.61
Cum. variance (%) 51.39 70
Eigenvalue 4.62 1.67

We conducted two separate PCA analyses on soil attributes for lowland tropical forests. The ‘Coarse scale soil data’ analysis used 14 soil attributes from 30 forests, while the ‘Fine scale

soil data’ used 9 soil attributes from 16 forests. For both analyses, we calculated the variable contribution (%), eigenvalues, variance, and cumulative explained variance for the first two
components (PC1and PC2). In bold are the contributions (%) whose |loadings| (loadings are equal to the coordinates of the variables divided by the square root of the eigenvalue associated
with the component) were greater than the mean, indicating the most important contributions. Symbols in parentheses indicate the direction of the association between the soil variable

and the PCs.
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Extended Data Table 4 | Coefficients for the analysis of the relative abundance of EcM trees in relation to soil properties ata
coarse scale

Parameter Estimate LCI ucl
Mean - u
Intercept (Region Africa) -1.63 -3.39 0.21
Region Asia 1.01 -0.83 2.82
Region Neotropics -2.53 -4.53 -0.54
PC1 (Region Africa) -0.37 -1.27  0.63
PC2 (Region Africa) 0.35 -0.74 1.42
Region Asia:PC1 0.31 -0.72 1.24
Region Neotropics:PC1 0.47 -0.58 14
Region Asia:PC2 -0.22 -1.35 0.93
Region Neotropics:PC2 -0.39 -1.47 0.75
Precision - ¢

Intercept 1.03 -0.23 2.05
Region Asia 0.4 -0.86 1.8
Region Neotropics 2.46 -0.16  4.49

Parameter is the variable included in the model. Estimate, LCl and UCI are the mean estimate, the lower and the upper 95% credible intervals, respectively, calculated from the posterior
predictive distribution. Coefficients with credible intervals that contain zero are considered to have negligible influence, whereas coefficients in bold exclude zero and are considered
influential. The reference level for the categorical variable ‘Region’ is Africa.
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Extended Data Table 5 | Coefficients for the analysis of the relative abundance of EcM trees among and within 16 lowland

tropical forests at afine scale

Parameter

Estimate LCI ucl

Parameter

Estimate LCI ucl

Fixed effect

Intercept
PC1

PC2
Convexity
Slope
Elevation

(log) BA

Intercept
PC1

PC2
Convexity
Slope
Elevation

(log) BA

Discrete component - Bernoulli process

3.48 2.77 4.19
-0.88 -1.44 -0.33
-0.12 -0.46 0.22
0.15 -0.001 0.3
-0.11 -0.33 0.1
0.27 -0.7 1.26
0.3 0.14 0.45

Continuous component - beta process

-2.16 -2.52 -1.81
-0.16 -0.33 0.01
-0.08 -0.18 0.01
0.01 -0.02 0.04
-0.06 -0.11 0.00
0.17 -0.26 0.6
0.23 0.2 0.27

Random effect
7 site

7 site PC1

7 site PC2

7 site Convexity
7 site Slope

7 site Elevation

7 site (log) BA

Precision - ¢

7 site

7 site PC1

7 site PC2

7 site Convexity
7 site Slope

7 site Elevation

7 site (log) BA

7ID.z

$IDz

BID.o

Discrete component - Bernoulli process

0.19 0.09 0.43
1.31 0.59 2.58
3.98 1.39 8.22
21.01 10.39 37.3
5.48 2.97 8.95
0.83 0.51 1.27
8.42 5.15 12.54

Continuous component - beta process

6.17 5.9 6.5
1.25 0.66 2.05
5.69 2.9 9.93
35.82 829 110.76
1018.54 17213 33824
67.91 30.81 142.4
1.1 0.5 2.1
6.99 3.85 12.84

Spatial random terms (BYM2)
Discrete component - Bernoulli process
2.69 2.09 3.34
0.96 0.94 0.97

Continuous component - beta process

0.79 0.73 0.84

Parameter is the variable included in the model, and its estimate, LCI, and UCI (95% credible intervals) are calculated from the posterior predictive distribution. The table is partitioned both
horizontally and vertically. Horizontally, the left section shows fixed effect coefficients, whereas the right section shows the random effect coefficients. Vertically, the table is split into three
sections. The top and middle sections show coefficients for the discrete and continuous components of the ZABE model, respectively. The bottom section lists coefficients for the spatial
random terms (BYM2 model) for both components. Fixed effects coefficients in bold exclude zero and are considered influential, whereas fixed effects coefficients with credible intervals that
contain zero (not in bold) are considered negligible. Random effects are restricted to be positive. Precision is indicated by t, with t=1/vo, where o is the standard deviation. For the spatial
random terms in the discrete component, the parameter ‘T ID.z’ indicates the posterior of the precision of the spatial field and the parameter ‘¢ ID.z" indicates the posterior of the precision of
the mixing parameter (see'® for details). The parameter ‘B ID.o’ in the spatial random terms for the continuous component represents the estimated scale parameter. All continuous predictors

in the model were standardized using their z-score, and the total basal area was transformed using the natural logarithm before standardization ((log) BA).
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Extended Data Table 6 | Coefficients for the analysis of the relative abundance of EcM trees among and within 13 lowland
tropical forests at a fine scale

Parameter Estimate LCI ucl
Discrete component - Bernoulli process
Intercept 3.69 2.89 4.5
PC1 -0.37 -1.07 0.32
PC2 -0.18 -0.63 0.27
Convexity 0.18 -0.03 0.38
Slope -0.11 -0.4 0.17
Elevation -0.04 -1.12 1.04
(log) BA 0.25 0.06 0.45
Continuous component - beta process
Intercept =217 -2.56 -1.78
PC1 -0.15 -0.35  0.05
PC2 -0.1 -0.22 0.02
Convexity 0.01 -0.03 0.04
Slope -0.06 -0.12 0
Elevation 0.39 -0.08 0.85
(log) BA 0.21 017  0.26

Parameter is the variable included in the model, and its estimate, LCI, and UCI (95% credible intervals) are calculated from the posterior predictive distribution. The table is split into two
sections. The top and bottom sections show coefficients for the discrete and continuous components of the ZABE model, respectively. Coefficients in bold exclude zero and are considered
influential, whereas coefficients with credible intervals that contain zero (not in bold) are considered negligible. All continuous predictors in the model were standardized using their z-score,
and the total basal area was transformed using the natural logarithm before standardization ((log) BA). This analysis excludes three forests: Amacayacu in Colombia, Khao Chong in Thailand
and Danum Valley in Malaysia. Random effects are not shown.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection

Data analysis All analyses were conducted in the R software environment for statistical computing and graphics version 4.2.0. We used the packages brms
version 2.16.1 for constructing of a GLM. The package brms uses the library STAN and the package cmdstanr version 0.4.0 as backbone. We
used the package INLA version 22.05.07 for constructing a GLMM. We used the package geoR version 1.8-1 to do spatial interpolation of soil
variables at a fine scale. We used the package missMDA version 1.18 to impute missing values for soil data at a coarse scale. We used the
package FactoMineR version 2.4 to construct PCAs. To calculate topography from elevation data, we used the package fgeo version 1.1.4.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

ForestGEO plot data can be obtained upon request via the ForestGEO portal at http://ctfs.si.edu/datarequest/. All data sources are listed in Extended Data Table 1.
PCA axes and the contribution (proportion) of EcM trees to basal area can be found at https://doi.org/10.5281/zenodo.10044772
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We compiled data on the relative abundance of EcM trees (i.e., the proportion of basal area [BA] contributed by EcM trees) and soil
properties of 31 lowland tropical forests from the Forest Global Earth Observatory (ForestGEO) plot network of research sites and
the literature. We created two datasets: one dataset at a coarse scale using mean plot level data for 30 sites, and another dataset at
a fine scale using spatially explicit (20 x 20m quadrats) data from 16 sites. The fine scale dataset included data from 16 sites, because
these sites had all trees > 1 cm in DBH identified and the most complete and consistently measured set of soil variables. We
constructed two PCAs using the soil data: one at a coarse scale and one at a fine scale. We selected the first two principal
components of those PCAs to characterize variation in soil properties at each scale (i.e., fine and coarse scale). We then used these
selected PCA axes in a generalized linear model (GLM) and a generalized linear mixed effects model (GLMM) to assess the association
between EcM tree abundance in basal area (BA) and soil properties. The GLM was used to analyze coarse scale associations across
forests, while the GLMM was used to analyze fine scale associations within and across forests.

Research sample There were 31 lowland tropical forests included in the study, with 29 ForestGEOQ sites and two sites from literature. The plot sizes
ranged between 2 and 52 hectares. A dataset at a coarse scale was created using data from 30 sites, with mean plot-level
information on the relative abundance of EcM trees in terms of basal area and soil properties, including soil chemistry (i.e., Al, Ca, K,
Mg, Mn, Na, CEC, and TEB in cmolc.kg-1, plant-available P in mg.kg-1, pH, and percent base saturation [BS]) and soil texture (i.e., the
proportion of sand, clay, and silt content). Another dataset was created at a fine scale using data from 16 sites, where all trees > 1 cm
in DBH were identified to species, and with the most complete and consistently measured set of soil variables, including Al, Ca, K, Mg,
Na, Fe, Mn, plant-available P, and pH. The fine scale dataset was based on 20 x 20 m quadrats.

Sampling strategy For the 29 ForestGEO plots, all free-standing woody plants were identified to species, mapped, and measured for DBH. The DBH cut-
off varied among plots, as indicated in Extended Data Table 1. The standard soil sampling method involved taking one sample at the
center of each 40x40 m quadrat and another sample at a distance of 2, 8 or 20 m in a randomly chosen direction to capture fine-
scale variation in soil properties. For the 2-ha Bukit Timah plot, we collected one sample in every other 20x20m quadrat. Soil samples
were collected from the top 10cm. In cases where soil data were not available (i.e., sites where we did not measure collected and
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measured soil samples), we obtained mean plot-level soil data from the literature. We included two sites from the literature, and
these two sites were included only in the dataset at a coarse scale.

Data collection For free-standing woody plants, all tree censuses were conducted by multiple technicians during long field campaigns. The protocol
used for the tree census is described in the publication "Tropical forest census plots: methods and results from Barro Colorado Island,
Panama and a comparison with other plots. " by Condit, R. (1998) and is currently being implemented in all ForestGEO plots.

For soil data, multiple technicians collected soil data in the field following the same protocol (refer to the sampling strategy section in
this pdf).

Timing and spatial scale  We used two spatial scales. In the coarse level dataset, we used mean-plot level data. In the fine scale dataset, we used spatially
explicit data (i.e., 20 x 20 m quadrat). We used one census per site.

Data exclusions We conducted two analyses, one analysis at a coarse scale using mean plot level data and another analysis at a fine scale using
spatially explicit (20 x 20 m quadrats) data. For the analysis at a coarse scale, we excluded one site from Oceania because one of the
goals of this study was to test for interactions between tropical region and soil fertility. As Oceania had only one observation (n = 1),
we excluded it from the analysis. However, we included this site in the analysis at a fine scale as the objective of this second analysis
was to assess the association between fine-scale soil fertility and the fine-scale distribution and abundance of EcM trees across and
within sites.
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Reproducibility No experiments have been conducted for this study. Tree census and soil data collection are described in detail and we also provide
detailed description of the statistical methods that can be used to replicate the analysis in other studies.

Randomization For this study, randomization applies to soil data collection. The standard soil sampling method involved taking one sample at the
center of each 40x40 m quadrat and another sample at a distance of 2, 8, or 20 m in a randomly chosen direction to capture fine-
scale variation in soil properties. However, for the plot at Bukit Timah, which is only 2 hectares, one sample was collected in every

20x20m quadrat. Randomization is not relevant for the tree data.

Blinding Blinding is not relevant for the study design.

Did the study involve field work? Yes |:| No

Field work, collection and transport

Field conditions Censuses for each plot take an average of six months to a full year. Climatic data is described in Extended Data Table 2. All sites are
located in the tropics, and temperature is relatively similar among plots.

Location The 31 sites are located across the tropics. Nine sites in the Neotropics. Five sites in Africa. One site in Oceania. Sixteen sites in Asia.
Maps showing site locations are displayed in Fig. 1a and Extended Data Fig. 1.

Access & import/export  All research activities carried out by ForestGEO and the partnering institutions at each site are conducted under strict regulations in
accordance with local government laws that regulate each site, with the aim of minimizing any type of disturbance.

Disturbance Each site has a system of well defined trails to minimize impact.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern
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Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes
[] Public health

|:| National security
|:| Crops and/or livestock
|:| Ecosystems
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|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

Yes

|:| Demonstrate how to render a vaccine ineffective

|:| Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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